Fazekas Tamás, Merkely Béla, Papp Gyula, Tenczer József (szerk.)

Klinikai szív-elektrofiziológia és aritmológia


Irodalom

  1. Abbott, G. W., Sesti, F., Splawski, I. et al.: MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell., 1999, 97(2): 175–187.
  2. Abernethy, D. R., Soldatov, N. M.: Structure-functional diversity of human L-type Ca2+ channel: perspectives for new pharmacological targets. J. Pharmacol. Exp. Ther., 2002, 300(3): 724–728.
  3. Antzelevitch, C., Pollevick. G. D., Cordeiro, J. M., et al.: Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation, 2007, 115: 442–449.
  4. Arikkath, J., Campbell, K. P.: Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr. Opin. Neurobiol., 2003, 13(3): 298–307.
  5. Barhanin, J., Lesage, F., Guillemare, E. et al.: K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current [see comments]. Nature, 1996, 384: 78–80.
  6. Bellocq, C., van Ginneken, A. C., Bezzina, C. R. et al.: Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation, 2004, 109(20): 2394–2397.
  7. Bianchi, L., Shen, Z., Dennis, A. T. et al.: Cellular dysfunction of LQT5-minK mutants: abnormalities of IKs, IKr and trafficking in long QT syndrome. Hum. Mol. Genet., 1999, 8(8): 1499–1507.
  8. Catterall, W. A., Goldin, A. L., Waxman, S. G.: International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol. Rev., 2005, 57: 397–409.
  9. Catterall, W. A., Perez-Reyes, E., Snutch, T. P., et al.: International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol. Rev., 2005, 57: 411–425.
  10. Catterall, W. A.: From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron, 2000, 26(1): 13–25.
  11. Chandra, R., Starmer, C. F., Grant, A. O.: Multiple effects of KPQ deletion mutation on gating of human cardiac Na+ channels expressed in mammalian cells. Am. J. Physiol., 1998, 274(5 Pt 2): H 1643–1654.
  12. Chandy, K. G., Gutman, G. A.: Nomenclature for mammalian potassium channel genes. Trends Pharmacol. Sci., 1993, 14: 434.
  13. Chouabe, C., Neyroud, N., Guicheney, P. et al.: Properties of KvLQT1 K+ channel mutations in Romano-Ward and Jervell and Lange-Nielsen inherited cardiac arrhythmias. Embo. J., 1997, 16(17): 5472–5479.
  14. Chouabe, C., Neyroud, N., Richard, P. et al.: Novel mutations in KvLQT1 that affect Iks activation through interactions with Isk. Cardiovasc. Res., 2000, 45(4): 971–980.
  15. Clancy, C. E., Kass, R. S.: Inherited and acquired vulnerability to ventricular arrhythmias: cardiac Na+ and K+ channels. Physiol. Rev., 2005, 85(1): 33–47.
  16. Clancy, C. E., Tateyama, M., Liu, H., et al.: Non-equilibrium gating in cardiac Na+ channels: an original mechanism of arrhythmia. Circulation, 2003, 107(17): 2233–2237.
  17. Corey, S., Krapivinsky, G., Krapivinsky, L. et al.: Number and stoichiometry of subunits in the native atrial G-protein-gated K+ channel, IKACh. J. Biol. Chem., 1998, 273(9): 5271–5278.
  18. Curran, M., Splawski, I., Timothy, K. et al.: A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell., 1995, 80: 795–803.
  19. Ellis, S. B., Williams, M. E., Ways, N. R., et al.: Sequence and expression of mRNAs encoding the alpha 1 and alpha 2 subunits of a DHP-sensitive calcium channel. Science, 1988, 241(4873): 1661–1664.
  20. Ertel, E. A., Campbell, K. P., Harpold, M. M., et al.: Nomenclature of voltage-gated calcium channels. Neuron, 2000, 25(3): 533–535.
  21. Fozzard, H., Hanck, D. A.: Structure and function of voltage-dependent sodium channels: comparison of brain II and cardiac isoforms. Physiolog. Rev., 1996, 76: 887–926.
  22. Franqueza, L., Lin, M., Shen, J. et al.: Long QT syndrome-associated mutations in the S4-S5 linker of KvLQT1 potassium channels modify gating and interaction with minK subunits. J. Biol. Chem., 1999, 274(30): 21063–21070.
  23. Gee, S. H., Madhavan, R., Levinson, S. R., et al.: Interaction of muscle and brain sodium channels with multiple members of the syntrophin family of dystrophin associated proteins. J. Neurosci., 1998, 18: 128–137.
  24. Goldin, A. L., Barchi, R. L., Caldwell, J. H., et al.: Nomenclature of voltage-gated sodium channels. Neuron, 2000, 28(2): 365–368.
  25. Goldstein, S. A. G., Bayliss, D. A., Kim, D., et al.: International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels. Pharmacol. Rev., 2005, 57: 527–540.
  26. Goldstein, S. A. G, Price, L. A., Rosenthal, D. N., et al.: ORK1, a potassium selective leak channel with two pore domains cloned from Drosophila melanogaster by expression in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA, 1996, 93: 13256–13261.
  27. Grant, A. O., Carboni, M. P., Neplioueva, V., et al.: Long QT syndrome, Brugada syndrome, and conduction system disease are linked to a single sodium channel mutation. J. Clin. Invest., 2002, 110(8): 1201–1209.
  28. Gutman, G. A., Chandy, K. G., Grissmer, S., et al.: International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol. Rev., 2005, 57: 473–508.
  29. Guy, H. R., Seetharamulu, P.: Molecular model of the action potential sodium channel. Proc. Natl. Acad. Sci. USA, 1986, 508: 508–512.
  30. Hanlon, M. R., Wallace, B. A.: Structure and function of voltage-dependent ion channel regulatory beta subunits. Biochemistry, 2002, 41(9): 2886-2894.
  31. Heinemann, S. H., Terlau, H., Stuehmer, W. et al.: Calcium channel characteristics conferred on the sodium channel by single mutations. Nature, 1992, 356: 441–443.
  32. Ho, K., Nichols, C. G,, Lederer WJ, et al.: Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature, 1993, 362: 31–38.
  33. Hodgkin, A. L.,Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 1952, 117: 500 –544.
  34. Hofmann, F., Biel, M., Kaupp, U. B.: International Union of Pharmacology. LI. Nomenclature and structure-function relationships of cyclic nucleotide-regulated channels. Pharmacol. Rev., 2005, 57:455–462.
  35. Hullin, R., Singer-Lahat, D., Freichel, M., et al.: Calcium channel beta subunit heterogeneity: functional expression of cloned cDNA from heart, aorta and brain. Embo. J., 1992, 11(3): 885–890.
  36. Isom, L. L., De Jongh, K. S., Patton, D. E. et al.: Primary structure and functional expression of the b1 subunit of the rat brain sodium channel. Science 1992, 256: 839–842.
  37. Jones, E. M., Roti, E. C., Wang, J. et al.: Cardiac IKr channels minimally comprise hERG 1a and 1b subunits. J. Biol. Chem., 2004, 279(43): 44690–44694.
  38. Kaab, S., Dixon, J., Duc, J. et al.: Molecular basis of transient outward potassium current downregulation in human heart failure: a decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation, 1998, 98(14): 1383–1393.
  39. Kubo, Y., Baldwin, T. J., Jan, Y. N., et al.: Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature, 1993, 362: 127–133.
  40. Kyndt, F., Probst, V., Potet, F., et al.: Novel SCN5A mutation leading either to isolated cardiac conduction defect or Brugada syndrome in a large French family. Circulation, 2001, 104(25): 3081–3086.
  41. Lees-Miller, J. P., Duan, Y., Teng, G. Q. et al.: Novel gain-of-function mechanism in K+ channel-related long-QT syndrome: altered gating and selectivity in the HERG1 N629D mutant. Circ. Res., 2000, 86(5): 507–513.
  42. Lesage, F., Guillemare, E., Fink, M., et al.: TWIK-1, a ubiquitous human weakly inward rectifying potassium channel with a novel structure. E. M. B. O. J., 1996, 15: 1004–1011.
  43. Lipkind, G. M., Fozzard, H. A.: A structural model of tetrodotoxin and saxitoxin binding site of the Na1 channel. Biophys. J., 1994, 66: 1–13.
  44. Lopatin, A. N., Nichols, C. G.: Inward rectifiers in the heart: an update on IK1· J. Mol. Cell. Cardiol., 2001, 33(4): 625–638.
  45. Malhotra, J. D., Koopmann, M. C., Kazen-Gillespie, K. A. et al.: Structural requirements for interaction of sodium channel beta 1 subunits with ankyrin. J. Biol. Chem., 2002, 277(29): 26681–26688.
  46. Martens, J. R., Kwak, Y. G., Tamkun, M. M.: Modulation of Kv channel alpha/beta subunit interactions. Trends Cardiovasc. Med., 1999, 9(8): 253–258.
  47. Marx, S. O., Kurokawa, J., Reiken, S. et al.: Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science, 2002, 295(5554): 496–499.
  48. Milanesi, R., Baruscotti, M., Gnecchi-Ruscone, T., Difrancesco, D.: Familial sinus bradycardia associated with a mutation in the cardiac pacemaker channel. N. Engl. J. Med., 2006, 354:151–157.
  49. Mohler, P. J., Le Scouarnec, S., Denjoy, I., et al.: Defining the Cellular Phenotype of “Ankyrin-B Syndrome” Variants. Human ANK2 variants associated with clinical phenotypes display a spectrum of activities in cardiomyocytes. Circulation, 2007, 115: 432–441.
  50. Nabauer, M., Beuckelmann, D. J., Uberfuhr, P. et al.: Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation, 1996, 93(1): 168–177.
  51. Nattel, S., Yue, L., Wang, Z.: Cardiac ultrarapid delayed rectifiers: a novel potassium current family of functional similarity and molecular diversity. Cell. Physiol. Biochem., 1999, 9(4-5): 217–226.
  52. Nattel, S.: New ideas about atrial fibrillation 50 years on. Nature 2002, 415(6868): 219–226. Nerbonne, J. M, Kass, R. S: Molecular physiology of cardiac repolarization. Physiol. Rev. 2005, 85(4): 1205–1253.
  53. Nerbonne, J. M, Kass, R. S: Molecular physiology of cardiac repolarization. Physiol. Rev., 2005, 85(4): 1205–1253.
  54. Neyroud, N., Tesson, F., Denjoy, I. et al.: A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome [see comments]. Nat. Genet., 1997, 15: 186–189.
  55. Noda, M., Ikeda, T., Suzuki, T., et al.: Expression of functional sodium channels from cloned cDNA. Nature, 1986, 322: 826–828.
  56. Noda, M., Shimizu, S., Tanabe, T., et al.: Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature, 1984, 312: 121–127.
  57. Nof, E., Luria, D., Brass, D., Marek, D., Lahat, H., Reznik-Wolf, H., Pras, E., Dascal, N., Eldar, M., Glikson, M.: Point mutation in the HCN4 cardiac ion channel pore affecting synthesis, trafficking, and functional expression is associated with familial asymptomatic sinus bradycardia. Circulation, 2007, 116:463–470.
  58. O’Connell, A. D., Morton, M. J., Hunter, M.: Two-pore domain K+ channels-molecular sensors. Biochem. Biophys. Acta 2002, 1566(1–2): 152–161.
  59. Papazian, D. M., Schwarz, T. L., Tempel, B. L., et al.: Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science ,1987, 237: 749–753.
  60. Pourrier, M., Schram, G., Nattel, S.: Properties, expression and potential roles of cardiac K+ channel accessory subunits: MinK, MiRPs, KChIP, and KChAP. J. Membr. Biol., 2003, 194(3): 141–152.
  61. Pragnell, M., De Waard, M., Mori, Y., et al.: Calcium channel beta-subunit binds to a conserved motif in the I-II cytoplasmic linker of the alpha 1-subunit. Nature, 1994, 368(6466): 67–70.
  62. Priori, S. G., Pandit, S. V., Rivolta, I. et al.: A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ. Res., 2005, 96(7): 800–807.
  63. Rivolta, I., Abriel, H., Tateyama, M., et al.: Inherited Brugada and long QT-3 syndrome mutations of a single residue of the cardiac sodium channel confer distinct channel and clinical phenotypes. J. Biol. Chem., 2001, 276(33): 30623–30630.
  64. Roden, D. M., Balser, J. R., George, A. L., Jr., et al.: Cardiac ion channels. Annu. Rev. Physiol., 2002, 64: 431–475.
  65. Roden, D. M., Balser, J. R.: A plethora of mechanisms in the HERG-related long QT syndrome. Genetics meets electrophysiology. Cardiovasc. Res., 1999, 44(2): 242–246.
  66. Rosati, B., Pan, Z., Lypen, S. et al.: Regulation of KChIP2 potassium channel beta subunit gene expression underlies the gradient of transient outward current in canine and human ventricle. J. Physiol., 2001, 533(Pt 1): 119–125.
  67. Sanchez-Chapula, J. A., Navarro-Polanco, R. A., Culberson, C. et al.: Molecular determinants of voltage-dependent human ether-a-go-go related gene (HERG) K+ channel block. J. Biol. Chem., 2002, 277(26): 23587–23595.
  68. Sanguinetti, M., Curran, M., Spector, P. et al.: Spectrum of HERG K+-channel dysfunction in an inherited cardiac arrhythmia [published erratum appears in Proc. Natl. Acad. Sci. U.S.A 1996. Aug. 6; 93(16): 8796]. Proc. Natl. Acad. Sci. USA, 1996, 93: 2208–2212.
  69. Sanguinetti, M., Curran, M., Zou, A. et al.: Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel [see comments]. Nature, 1996, 384: 80–83.
  70. Satin, J., Kyle, J. W., Chen, M., et al.: A mutant of TTX-resistant cardiac sodium channels with TTX-sensitive properties. Science, 1992, 256: 1202–1205.
  71. Schram, G., Pourrier, M., Melnyk, P. et al.: Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ. Res., 2002, 90(9): 939–950.
  72. Schulze-Bahr, E., Neu, A., Friederich, P., Kaupp, U. B., Breithardt, G., Pongs, O., Isbrandt, D.: Pacemaker channel dysfunction in a patient with sinus node disease. J. Clin. Invest., 2003, 111:1537–1545.
  73. Seino, S., Miki, T.: Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog. Biophys. Mol. Biol. 203, 81(2): 133–176.
  74. Sesti, F., Abbott, G. W., Wei, J. et al.: A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proc. Natl. Acad. Sci. USA, 2000, 97(19): 10613–10618.
  75. Smith, M. R., Goldin, A. L.: Interaction between the sodium channel inactivation linker and domain III S4–S5. .Biophys. J., 1997, 73: 1885–1895.
  76. Soldatov, N. M.: Genomic structure of human L-type Ca2+ channel. Genomics, 1994, 22(1): 77–87.
  77. Sotgia, F., Lee, J. K., Das, K., et al.: Caveolin-3 directly interacts with the C-terminal tail of beta-dystroglycan. Identification of a central WW-like domain within caveolin family members. J. Biol. Chem., 2000, 275(48): 38048–38058.
  78. Splawski, I., Shen, J., Timothy, K. et al.: Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation, 2000, 102: 1178–1785.
  79. Splawski, I., Timothy, K. W., Sharpe, L. M., et al.: Cav1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell., 2004, 119: 19–31.
  80. Splawski, I., Tristani-Firouzi, M., Lehmann, M. H., et al.: Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nat. Genet., 1997, 17: 338–340.
  81. Stuehmer, W., Conti, F., Suzuki, H. et al.: Structural parts involved in activation and inactivation of the sodium channel. Nature, 1993, 339: 597– 603.
  82. Tan, H. L., Bink-Boelkens, M. T., Bezzina, C. R., et al.: A sodium-channel mutation causes isolated cardiac conduction disease. Nature, 2001, 409(6823): 1043–1047.
  83. Tempel, B. L., Papazian, D. M., Schwarz, T. L., et al.: Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science, 1987, 237: 770–775.
  84. Tester, D. J., Will, M. L., Haglund, C. M. et al.: Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm., 2005, 2(5): 507–517.
  85. Tristani-Firouzi, M., Jensen, J. L., Donaldson, M. R. et al.: Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J. Clin. Invest., 2002, 110(3): 381–388.
  86. Tristani-Firouzi, M., Sanguinetti, M. C.: Structural determinants and biophysical properties of HERG and KCNQ1 channel gating. J. Mol. Cell. Cardiol., 2003, 35(1): 27–35.
  87. Tseng, GN.: IKr: the hERG channel. J. Mol. Cell. Cardiol., 2001, 33(5): 835–849.
  88. Tsien, R. W., Lipscombe, D., Madison D, et al.: Reflections on Ca2+-channel diversity, 1988–1994. Trends Neurosci., 1995, 18(2): 52–54.
  89. Ueda, K., Nakamura, K., Hayashi, T., Inagaki, N., Takahashi, M., Arimura, T., Morita, H., I., M., Takishita, S., Yamashina, A., Ohe, T., Sunamori, M., Hiraoka, M., Kimura, A.: Functional characterization of a trafficking-defective HCN4 mutation, D553N, associated with cardiac arrhythmia. J. Biol. Chem., 2004, 279: 27194–27198.
  90. Vatta, M., Ackerman, M. J., Ye, B. et al.: Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation, 2006, 114(20): 2104–2012.
  91. Wang, D. W., Desai, R. R., Crotti, L., et al.: Cardiac sodium channel dysfunction in sudden infant death syndrome. Circulation, 2007, 115(3): 368–76.
  92. Wang, Q., Curran, M., Splawski, I. et al.: Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat. Genet., 1996, 12: 17–23.
  93. West, J. W., Patton, D. E., Scheuer, T. et al.: A cluster of hydrophobic aminoacid residues required for fast Na1-channel inactivation. Proc. Natl. Acad. Sci. USA, 1992, 89: 10910–0914.
  94. Yellen, G.: The voltage-gated potassium channels and their relatives. Nature, 2002, 419(6902): 35–42.
  95. Yu, F. H., Yarov-Yarovoy, V., Gutman, G. A., et al.: Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol. Rev., 2005, 57: 387–395.
  96. Zhang, Z., Xu, Y., Song, H., et al.: Functional roles of Cav1.3 alpha1D calcium channel in sinoatrial nodes: insight gained using gene-targeted null mutant mice. Circ. Res., 2002, 90(9): 981–987.

Klinikai szív-elektrofiziológia és aritmológia

Tartalomjegyzék


Kiadó: Akadémiai Kiadó

Online megjelenés éve: 2016

ISBN: 978 963 059 748 7

A Klinikai szív-elektrofiziológia és aritmológia első kiadását a szívritmuszavarok patofiziológiájában, farmakológiájában, diagnosztikájában és gyógyításában kiemelkedően jártas hazai szakírók vetették papírra. Az aritmiában szenvedő betegek optimális ellátásához nélkülözhetetlen, az idő tájt rendelkezésre álló elméleti és klinikai tudnivalókat átfogóan ismertető kézikönyv iránti olvasói érdeklődés és a Magyar Tudományos Akadémia Orvosi Osztályának Nívódíja bizonyította, hogy a szerzők és a szerkesztők erőfeszítései nem voltak haszontalanok. Egy évtized az élettudományok fejlődésének jelenlegi tempóját figyelembe véve nagyon hosszú idő. Az elektrofiziológia és (a)ritmológia mind a mai napig a szívgyógyászat egyik legdinamikusabban fejlődő technicizálódó ága, melynek vertikuma egyre nagyobb: a szívizom szabályos ritmikáját megzavaró, nemritkán öröklődő patobiokémiai eltérések felismerésétől az új típusú, innovatív gyógyszerek hozzáértő alkalmazásán keresztül az egyre kifinomultabb invazív terápiás eljárásokig ível. Ennélfogva idő- és szükségszerűvé vált a lényegbevágóan új diagnosztikai / képalkotó módszerek, gyógyszeres és instrumentális kezelési módozatok, valamint a nagy mintaszámú, randomizált, kontrollcsoportos arrhythmiavizsgálatok eredményein nyugvó és a szakmai tudományos irányelvek főbb útmutatásait visszatükröző ismeretek friss, kézikönyvbe foglalt szintézise: a tudományág fejlődésével lépést tartó jelen, második, új fejezetek beépítésével és a régebbiek újraírásával, felülvizsgálatával gazdagított kiadás megírása, összeállítása.

Hivatkozás: https://mersz.hu/fazekas-merkely-papp-tenczer-klinikai-sziv-elektrofiziologia-es-aritmologia//

BibTeXEndNoteMendeleyZotero

Kivonat
fullscreenclose
printsave