6.1. General Statements and Findings
Jegyzet elhelyezéséhez, kérjük, lépj be.!
Hivatkozások
Jegyzet elhelyezéséhez, kérjük, lépj be.!
Hivatkozások
Jegyzet elhelyezéséhez, kérjük, lépj be.!
Hivatkozások
Hivatkozások
Jegyzet elhelyezéséhez, kérjük, lépj be.!
Hivatkozások
Jegyzet elhelyezéséhez, kérjük, lépj be.!
Hivatkozások
Jegyzet elhelyezéséhez, kérjük, lépj be.!
Hivatkozások
Jegyzet elhelyezéséhez, kérjük, lépj be.!
Hivatkozások
Jegyzet elhelyezéséhez, kérjük, lépj be.!
Hivatkozások
|
LDA Topics
|
|
NMF Topics
|
||
|
Mostly temporal and procedural references – may relate to legislation timelines or efficiency programmes.
|
Topic 1: period, contracting, 2015, provides, efficient, 2016, 2014, contribution, 2003, optimal
|
|
Education and cultural sustainability; sustainability as a societal and curricular value.
|
Topic 1: exam, environmental, protection, values, use, cultural, development, heritage, sustainable, sustainability
|
|
A legal-administrative theme focusing on sustainable governance and statutory requirements.
|
Topic 2: management, article, protection, act, government, sustainability, use, shall, development, sustainable
|
|
Natural resource governance – land, water, game management.
|
Topic 2: government, game, use, land, act, section, protection, management, sustainable, water
|
|
Environmental and resource governance – particularly water and energy sustainability.
|
Topic 3: use, production, development, protection, energy, management, act, section, sustainable, water
|
|
Public services, energy, and sustainable waste/resource management.
|
Topic 3: public, natural, service, sustainability, waste, act, development, section, sustainable, energy
|
|
(Same as Topic 1 – suggesting a duplicated thematic cluster in the model).
|
Topic 4: period, contracting, 2015, provides, efficient, 2016, 2014, contribution, 2003, optimal
|
|
Sustainable finance, EU regulations, green mortgages.
|
Topic 4: management, financial, European, mortgage, public, EU, sustainability, act, section, sustainable
|
|
(Another repetition – may reflect consistent use of fixed legal boilerplate language across sections).
|
Topic 5: period, contracting, 2015, provides, efficient, 2016, 2014, contribution, 2003, optimal
|
|
Legislative and administrative obligations for sustainability.
|
Topic 5: article, act, management, natural, government, section, minister, development, shall, sustainable
|
|
Focuses on economic and financial instruments related to sustainability – e.g., green bonds, public finance, EU regulations.
|
Topic 6: economic, mortgage, European, financial, EU, public, sustainability, section, act, sustainable
|
|
International treaties and frameworks on climate change and biodiversity.
|
Topic 6: convention, economic, change, resources, use, climate, article, biological, development, sustainable
|
Jegyzet elhelyezéséhez, kérjük, lépj be.!
Hivatkozások
Jegyzet elhelyezéséhez, kérjük, lépj be.!
Hivatkozások
Jegyzet elhelyezéséhez, kérjük, lépj be.!
Hivatkozások
| 1 | Iván, D., Boros, A., & Hegedüs, V. (2020). A fenntarthatóság társadalompolitikai indikátorai és azok hazai teljesülése. [Socio-political indicators of sustainability and their domestic fulfillment]. Pro Publico Bono–Public Administration, 8(2), 162-193. |
| 2 | LDA is a generative probabilistic model for discrete datasets. It is a three-level hierarchical Bayesian model, where each collection item is represented as a finite mixture over an underlying set of topics, and each topic is represented as an infinite mixture over a collection of topic probabilities. Since the number of topics need not be predefined, LDA provides researchers with an efficient resource to obtain an explicit representation of a document. In contrast to LDA, NMF is a decompositional, non-probabilistic algorithm using matrix factorization and belongs to the group of linear-algebraic algorithms. NMF works on TF-IDF-transformed data by breaking down a matrix into two lower-ranking matrices. Specifically, NMF decomposes its input, which is a term-document matrix (A), into a product of a terms-topics matrix (W) and a topics-documents matrix (H). W contains the basis vectors, and H contains the corresponding weights. Egger, R., & Yu, J. (2022). A topic modeling comparison between lda, nmf, top2vec, and bertopic to demystify twitter posts. Frontiers in sociology, 7, 886498. A Topic Modeling Comparison Between LDA, NMF, Top2Vec, and BERTopic. URL: https://www.datascience-in-tourism.com/?p=550 (accessed: 29 October 2024). |