7.4.4. DPSIR analysis of the Water Framework Directive and water resource administration in the EU
Jegyzet elhelyezéséhez, kérjük, lépj be.!
Hivatkozások
Jegyzet elhelyezéséhez, kérjük, lépj be.!
Hivatkozások
Jegyzet elhelyezéséhez, kérjük, lépj be.!
Hivatkozások
Jegyzet elhelyezéséhez, kérjük, lépj be.!
Hivatkozások
-
Population growth and urbanisation: The growing EU population, especially in urban areas, increases water consumption and waste production. Urbanisation alters natural water flow patterns, leading to challenges in water management.2
-
Agricultural intensification: Agriculture remains a major water consumer and pollution source in Europe, particularly through nutrient runoff from fertilisers and pesticides.3
-
Climate change: The EU is increasingly experiencing extreme weather conditions, including droughts and floods, which intensify the strain on water resources and create uneven distribution across regions.4
-
Increased frequency of extreme weather events: Climate change leads to more frequent and intense droughts and floods, further straining water management systems.5
Jegyzet elhelyezéséhez, kérjük, lépj be.!
Hivatkozások
Jegyzet elhelyezéséhez, kérjük, lépj be.!
Hivatkozások
Jegyzet elhelyezéséhez, kérjük, lépj be.!
Hivatkozások
-
Water over-extraction: Excessive water use, especially for agriculture and industry, leads to the depletion of surface and groundwater reserves, exacerbating droughts in already water-scarce regions.6
-
Pollution: Deteriorating water quality from agriculture and industry has led to eutrophication in many European rivers, lakes, and coastal areas. Agricultural runoff, industrial discharges, and untreated urban wastewater contribute to water contamination, affecting ecosystems and human health.7
-
Hydrological alterations: Dams, water diversions, and infrastructure development disrupt the natural flow of rivers and degrade aquatic habitats.8
Jegyzet elhelyezéséhez, kérjük, lépj be.!
Hivatkozások
Jegyzet elhelyezéséhez, kérjük, lépj be.!
Hivatkozások
-
Water scarcity: Many parts of southern Europe face chronic water scarcity, with declining groundwater levels and drying rivers. This situation is exacerbated by more frequent droughts.9
-
Flood risks: Central and northern Europe are more prone to increased flooding due to climate change, stressing outdated flood protection systems.10
-
Ecological degradation: The loss of biodiversity in aquatic ecosystems, such as wetlands and riparian zones, is a direct result of water mismanagement and pollution.11
Jegyzet elhelyezéséhez, kérjük, lépj be.!
Hivatkozások
Jegyzet elhelyezéséhez, kérjük, lépj be.!
Hivatkozások
Jegyzet elhelyezéséhez, kérjük, lépj be.!
Hivatkozások
-
Economic impacts and social inequality: Uneven water distribution and access to clean water exacerbate social inequalities, particularly in rural and poorer regions.12 Water scarcity and poor water quality can negatively affect agriculture, tourism, and other water-dependent sectors, leading to significant economic losses.13
-
Public health risks: Contaminated water sources increase the risk of waterborne diseases, and insufficient water supply limits sanitation, particularly in vulnerable regions.14
-
Biodiversity loss: Over-extraction and pollution reduce the capacity of freshwater ecosystems to support diverse species, leading to the degradation of key habitats.15
Jegyzet elhelyezéséhez, kérjük, lépj be.!
Hivatkozások
Jegyzet elhelyezéséhez, kérjük, lépj be.!
Hivatkozások
Jegyzet elhelyezéséhez, kérjük, lépj be.!
Hivatkozások
-
WFD: Adopted in 2000, the WFD aims to achieve ‘good status’ for all water bodies in the EU by 2027. It promotes integrated water management, pollution reduction, and sustainable water use through river basin management plans.16
-
Floods Directive: The Floods Directive (2007/60/EC) complements the WFD by requiring Member States to assess flood risks and implement flood management plans, emphasising prevention and preparedness.17
-
EU Adaptation Strategy: In light of climate change, the EU’s Adaptation Strategy supports Member States in developing water resilience policies to manage droughts and floods.18
-
Investment in green infrastructure: There is growing emphasis on natural water retention measures, such as restoring wetlands and riparian forests, which help mitigate both droughts and floods.19
Hivatkozások
Jegyzet elhelyezéséhez, kérjük, lépj be.!
Hivatkozások
Jegyzet elhelyezéséhez, kérjük, lépj be.!
Hivatkozások
Jegyzet elhelyezéséhez, kérjük, lépj be.!
Hivatkozások
| 1 | Driver-Pressure-State-Impact-Response Framework (DPSIR) | Land & Water | Food and Agriculture Organisation of the United Nations | Land & Water | Food and Agriculture Organisation of the United Nations. (n.d.). URL: https://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1026561/ (accessed: 23 September 2024). |
| 2 | Voulvoulis, N., Arpon, K. D., & Giakoumis, T. (2017). ‘The EU Water Framework Directive: From great expectations to problems with implementation.’ Science of The Total Environment, 45(2) Vol. 575. 358–366. https://doi.org/10.1016/J.SCITOTENV.2016.09.228 |
| 3 | García-Ruiz, J. M., López-Moreno, J. I., Vicente-Serrano, S. M., Lasanta, T., & Beguería, S. (2011). ‘Mediterranean water resources in a global change scenario.’ Earth-Science Reviews, 45(3-4), Iss. 105. 121-139. https://doi.org/10.1016/j.earscirev.2011.01.006 |
| 4 | Petersen-Perlman, J. D., Veilleux, J. C., & Wolf, A. T. (2017). ‘International water conflict and cetion: challenges and opportunities.’ Water International, 42(2), 105-120. https://doi.org/10.1080/02508060.2017.1276041 |
| 5 | Olesen, J. E., Trnka, M., Kersebaum, K. C., Skjelvåg, A. O., Seguin, B., Peltonen-Sainio, P., ... & Micale, F. (2011). ‘Impacts and adaptation of European crop production systems to climate change.’ European Journal of Agronomy, 19(2), Vol. 34. 96-112. https://doi.org/10.1016/j.eja.2010.11.003 |
| 6 | Garrick, D., De Stefano, L., Fung, F., O'Donnell, E., & Sinner, J. (2020). ‘Drought and water scarcity: Addressing emerging challenges in water governance.’ Water International, 45(6), 680-686. https://doi.org/10.1080/02508060.2020.1811708 |
| 7 | European Environment Agency (EEA). (2018). ‘European waters: Assessment of status and pressures 2018.’ EEA Report No 7/2018. https://www.eea.europa.eu/publications/state-of-water |
| 8 | Voulvoulis, N., Arpon et al. (2017) op. cit. |
| 9 | Carmona, G., Branco, P., Ferreira, M. T., & Ilhéu, M. (2022). ‘River flow management in Europe in light of climate change: challenges and opportunities.’ Environmental Science & Policy, 24(1) Iss.127. 122-135. DOI: https://doi.org/10.1016/j.envsci.2021.10.014 |
| 10 | Arnell, N. W., & Gosling, S. N. (2016). ‘The impacts of climate change on river flood risk at the global scale.’ Climatic Change, 39(3), Iss. 134. 387–401. https://doi.org/10.1007/s10584-014-1084-5 |
| 11 | Koundouri, P., Pashardes, P., Swanson, T., & Xepapadeas, A. (2003). The economics of water management in developing countries. Problems, principles and policies. (Cheltenham (UK)-Northampton (US):Edward Elgar Publishing). DOI:10.4337/9781781950517.00001 ISBN 978 1 84376 122 8 URL: https://www.e-elgar.com/shop/gbp/the-economics-of-water-management-in-developing-countries-9781843761228.html (accessed: 23 September 2024) |
| 12 | Voulvoulis, N., Arpon et al. (2017) op. cit. |
| 13 | Koundouri et al. (2017) op. cit. |
| 14 | Arnell & Gosling (2016) op. cit. |
| 15 | Carmona-Branco et al. (2022) op. cit. |
| 16 | Voulvoulis, N., Arpon et al. (2017) op. cit. |
| 17 | Arnell & Gosling (2016) op. cit. |
| 18 | Petersen-Perlman et al. (2017) op. cit. |
| 19 | Koundouri et al. (2017) op. cit. |
| 20 | The figure was compiled by the author of the chapter based on: Pandey, V. P., & Shrestha, S. (2016). DPSIR framework for evaluating groundwater environment. In: Groundwater Environment in Asian Cities. (Oxford:Buttherworth-Heinemann-Elsevier) 17–37. ISBN no. DOI: https://doi.org/10.1016/b978-0-12-803166-7.00002-7 |
| 21 | Koundouri et al. (2017) op. cit. |
| 22 | Tortajada, C. (2010) ‘Water governance: some critical issues.’ International Journal of Water Resources Development, 26(2), 297–307. |
| 23 | Garrick-De Stefano et al. (2020) op. cit. |
| 24 | Petersen-Perlman et al. (2017) op. cit. |
| 25 | Arnell & Gosling (2016) op. cit. |