Huszti Zsuzsanna

Cink az agyban


Irodalom

Brown C. E., Dyck R. H. (2004) Distribution of zincergic neurons in the mouse forebrain. J. Comp. Neurol., 479: 158–167.
Carpené E., Andreani G., Isani G. (2007) Metallothionein functions and structural characteristics. J. Trace Elements in Medicine and Biology, Suppl. 21: 35–39.
Danscher G., Obel J., Tholacius-Ussing O. (1980) Electron microscopic demonstration of metals in rat mast cells. A cytochemical study based on improved sulphide silver method. Histochemistry, 66: 293–296.
Danscher G. (1981) Histochemical demonstration of heavy metals. A revised version of the sulphide silver method suitable for both light and electronmicroscopy. Histochemistry, 71: 1–16.
Danscher G. (1984) Autometallography: a new technique for light and electronmicroscopic visualization of metals in biological tissues (gold, silver, metal sulphides and metal selenides). Histochemistry, 81: 331–335.
Danscher G., Stoltenberg M., Bruhn M., Sondergaard Ch., Jensen D. (2004) Immersion of autometallography: histochemical in situ capturing of zinc ions in catalytic zinc-sulphur nanocrystals. J. Histochem.Cytochem., 52: 1619–1625.
Danscher G., Stoltenberg M. (2005) Zinc-specific autometallographic in vivo selenium methods: Tracing of zinc-enriched (ZEN) terminals, ZEN pathways and pools of zinc ions in a multitude and other ZEN cells. Review. J. Histochem. Cytochem., 53: 141–153.
Dong H., Zhang W., Quan Y. (2014) Mast cells and neuroinflammation. Med. Sci. Monit. Basic Res., 20: 200–206.
Dropp J. J. (1972) Mast cells in the central nervous system of several rodents. Acad. Sci., 184: 227–268.
Dropp J. J. (1976) Mast cells in mammalian brain. Acta Anat., 94: 1–21.
Frederickson. Ch. J., Kliterick M. A., Manton W. J., Kirpatrick J. B. (1983) Cytoarchitectonic distribution of zinc in the hippocampus of man and rat. Brain Res., 273: 335–339.
Frederickson Ch. J., Kasarakis E. J., Ringo A., Frederickson R. E. (1987) A quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (bouton zinc) in the brain. Neurosci. Methods, 20: 91–103.
Frederickson Ch. J., Suh S. W., Silva D., Frederickson C. J., Thompson R. B. (2000) Importance of zinc in the central nervous system: The zinc-containing neuron. J. Nutr., 130: 1471S–1483S.
Frederickson Ch. J., Giblin III. L. J., Rengarajan B., Masalha R., Frederickson C. J., Zeng Y., Lopez E. V., Koch J. Y., Chorin U., Besser R., Herschfinkel M., Li Y., Thompson R. B., Krezel A. (2006) Synaptic release of zinc from brain slices. Factors govering release, imaging, and accurate calculation of concentration. J. Neurosci. Methods, 154: 19–29.
Gustafson G. T. (1967) Heavy metals in rat mast cell granules. Lab. Invest., 17: 588–598.
Hase H., Rink L. (2009) Functional significance of zinc-related signaling pathways in immun cells. Ann. Rev. Nutrition, 29: 133–152.
Haug F. M. (1967) Electronmicroscopical localization of the zinc in hippocampal mossy fibre synapses by a modified sulfide silver procedure. Histochemie, 81: 355–368.
Haug F. M., Blackstead T. W., Simonsen A. H., Zimmer J. (1971) Timm’s sulfide silver reaction for zinc during experimental anterograde degeneration of hippocampal mossy fibers. J. Comp. Neurol., 142: 23–31.
Hershey C.O., Hershey L.A., Varnes A., Vibbakar S. D., Lavin P., Strain W.H. (1983) Cerebrospinal fluid trace element content in dementia: clinical and pathological correlations. Neurology, 33: 1350–1353.
Ho L. H., Ruffin R. E., Li C. M., Krilis S. A., Zalewski P. D. (2004) Labile zinc and zinc transporter ZnT4 in mast cell granules: Role in regulation of caspase activation and NF–kappaB translocation. J. Immunol., 178: 7750–7760.
Ibrahim M. Z. (1974) The mast cells of the mammalian central nervous system. Part I. Morphology, distribution and histochemistry. J. Neurobiol. Sci., 21: 431–478.
Kabu K., Yamasaki S., Kamimura D., Ito Y., Hasegawa A., Sato M., Kitamara J., Nishida K. Hirano, T. (2006) Zinc is required for FcRI-mediated mast cell activation. J. Immunol., 177: 1296–1305.
Kettenman H., Verhratsky A. (2008) Neuroglia: the 150 years after. Trends Neurosci., 31: 653–659.
Ketterman J. K., Li Y. V. (2008) Presynaptic evidence of zinc release at the mossy fiber synapse of rat hippocampus. J. Neurosci. Res., 85: 422–434.
Maret W., Larsen K. S., Valee B. (1997) Coordination dynamics of biological zinc clusters in metallothioneins and in the DNA binding domain of the transcription factor Gal4. Proc. Natl. Acad Sci USA, 94: 2233–2237.
Maret W. (2000) The function of zinc in metallothionein: A link between cellular zinc and redox state. J. Nutrition, 1455S–1458S.
Maret W. (2011) Redox biochemistry of mammalian metallothioneins. J. Biol. Inorganic Chem., 18: 1079–1081.
Marquez A., Salazar V., Lima L. (2015) Localization of taurine transporter and zinc transporters in rat retinal cells and tissue: Effect of intracellular zinc-chelation. J. Mol Pathophys., 4: 42–50.
Neumann, J. (1890) Über das Vorkommen der sogenannten Mastzellen bei pathologischen Veränderungen des Gehirns. Virchows Arch., 122: 378–380.
Nishida K. et al. (2014) Zinc signaling by ’zinc wave’. In Fukuda T. and Kambe T. (Eds) Zinc signals in cellular finctions and disorders. Springer, Berlin, 89–109.
Nishida K., Uchida R. (2018) Role of Zinc Signaling in the Regulation of Mast Cell-, Basophil-, and T Cell-Mediated Allergic Responses. Journal of Immunology Research, 5: 1–9.
Nolte C., Gore A., Sekler J., Kresse W., Hersfinkel M., Hoffmann A., Kettenmann H., Moran A. (2004) ZnT-1 expression in astroglial cells protects against zinc toxicity and slows the accululation of intracellular zinc. Glia, 48: 145–155.
Perry D. K., Smyth M. J., Stennicke H. R., Salversen G. S., Duricz P., Poirier G. G., Hannun Y. A. (1997) Zinc is a potent inhibitor of the apoptotic protease caspase-3: A novel target for zinc in the inhibition of apoptosis. J. Biol. Chem., 272: 18530–18533.
Rubio M. E., Juiz J. M. (1998) Chemical anatomy of excitatory endings in the dorsal cochlear nucleus of the rat: differential synaptic distribution of aspartate aminotransferase, glutamate and vesicular zinc. J. Comp. Neurol., 399: 341–358.
Sanstead H. H., Frederickson Ch. J., Penland J. G. (2000) History of Zinc as Related to Brain Function. Nutrition, Suppl., 496S–501S.
Satarker S., Bojja L. et al. (2022) Astrocytic Glutamatergic Transmission and Its Implications in Neurodegenerative Disorders. Cells, 11(7): 1139.
Segawa S., Nishiura T., Furuta T., Ohsato Y., Tani M., Nishida K., Nagasawa K. (2014) Zinc is released by cultured astrocytes as a gliotransmitter under hypoosmotic stress-loaded conditions and regulates microglial activity. Life Sci., 94: 137–144.
Sekler J., Silverman W. F. (2012) Zinc homeostasis and signaling in glia. Glia, 60: 843–850.
Sensi S., Yin H. Z., Weiss J. H. (1999) Glutamate triggers preferential Zn2+ flux through Ca2+ permeable AMPA channels and consequent ROS production. Neuroreport, 10: 1723–1727.
Silverman A. J., Sutherland A. K., Wilhelm M., Silver R. (2000) Mast cells migrate from blood to brain. J. Neurosci., 30: 401–408.
Slomianka L. (1992) Neurons of origin of zinc-containing pathways and the distribution of zinc-containing boutons in the hippocampal region on the rat. Neuroscience, 48: 345–352.
Theoharides T. C. (1990) Mast cells: the immune gate to the brain. Life Sci., 46: 607–617.
Theoharides T. C., Baloyannis S. J., Yanolidis L. S. (1991) Activated rat peritoneal mast cells can cause syngeneic brain demyelination in vitro. Int. J. Immunopathol. Pharmacol., 4: 137–144.
Theoharides T. C., Asadi S. et al. (2013) The “missing link” in autoimmunity and autism: Extracellular mitochondrial components secreted from activated live mast cells. Autoimmunity Reviews, 12(12): 1136–1142.
Walker M., Hatfield J. K., Brown M. (2011) New insights into the role of mast cells in autoimmunity. Evidence for a common mechanism of action. Review. Biochim. Biophys. Acta, Special Issue: Mast cell in inflammation.
Yamasaki S., Sakata-Sogawa K., Hasagawa A., Suzuki T., Kabu K., Sato E., Kurosaki T., Yamashita S., Tokunaga M., Nishida K., Hirano T. (2007) Zinc is a novel intracellular messenger. JCB, 177: 637–645.
 

Cink az agyban

Tartalomjegyzék


Kiadó: Akadémiai Kiadó

Online megjelenés éve: 2025

Nyomtatott megjelenés éve: 2025

ISBN: 978 963 664 087 3

A cink az élő szervezetek esszenciális mikroeleme. Nagy mennyiségben megtalálható az emberi agyban, az izmokban, a csontokban, a vesében, a májban, a prosztatában és a szemben is. Több száz enzim működésében vesz részt – részben közvetlenül a katalitikus reakciókban, részben az enzimfehérjék koordinátoraként. Jelentős strukturális funkciót tölt be számos transzkripciós faktor szerkezetének kialakításában és a sejtek közötti kommunikációban. Huszti Zsuzsa vizsgálódásának tárgya ezúttal az agy. A kötet külön fejezetekben tárgyalja a cink szerepét az idegsejtekben, a neurofziológiában, a neuoropatológiában, az Alzheimer-kórban (a betegség terápiájában), a memóriában. A szerző széles szakirodalmi bázisra támaszkodva összegzi az ismeretanyagot, és gazdag hivatkozási listával látja el a fejezeteket.

Hivatkozás: https://mersz.hu/huszti-cink-az-agyban//

BibTeXEndNoteMendeleyZotero

Kivonat
fullscreenclose
printsave