Huszti Zsuzsanna

Cink az agyban


Irodalom

Barberis A., Cherubini E., Mozrzymes J. W. (2000) Zinc inhibits miniature GABAergic currents by allpsteric modulation of GABAA Receptor gatting. J. Neurosci., 20: 8618–8627.
Barrondo S., Salles J. (2009) Allosteric modulation of 5-HT(1A) receptors by zinc: Binding studies. Neuropharmacol., 56: 455–462.
Besser L., Chorin E., Sekler I., Silverman, W.F., Atkin S., Russel J., Hershfinkel M. (2009) Synaptically release zinc triggers metabotropic signaling via a zinc sensing receptor in the hippocampus. J. Neurosci., 29: 2890–2901.
Cao B., Wang J., Feng J. (2023) Signaling pathway mechanisms of neurological diseases induced by G protein‐coupled receptor 39. CNS Neuroscience & Therapeutics, https://onlinelibrary.wiley.com/doi/10.1111/cns.14174
Collingridge G., Olson R. W., Peters J., Spedding M. (2009) A nomenclature for ligand-gated ion channels. Neuropharmacology, 56: 2–3.
Cohen L., Asraf H., Sekler I., Hershfinkel M. (2012) Extracellular pH regulates zinc signaling via an asp residue of the zinc-sensing receptor (ZnR/GPR39). J. B. C., 287: 3339–33350.
Cull-Candy S., Brikley S., Farrat M. (2001) NMDA receptor subunits: diversity, develpment and disease. Curr. Opin. Neurobiol., 11: 327–35.
Dreixler J. C., Leonard J. P. (1994) Subunit specific enhancement of glutamate receptor responses by zinc. Brain Res. Mol. Brain Res., 22: 144–150.
Dong C. J., Weblin F. S. (1995) Zinc down modulates thf GABAC recceptor current in cone horizontal cells acutely isolated from the catfish retina. J. Neurophysiol., 73: 916–919.
Ganay Th., Asraf H., Aizenman E., Bogdanovic M., Sekler I. Hershfinkel M. (2015) Regulation of neuronal pH by metabotropic Zn2+-sensing Gq-coupled receptor, mZnR/GPR39. J. Neurochem., 135: 897–907.
Giovannini M. G. (2001) The role of extracellular signal-regulated kinase pathway in memory encoding. Rev. Neurosci., 17: 612–634.
Hershfinkel M., Moran A., Grossman N., Sekler I. (2001) A zinc-sensing receptor triggers the Release of intracellular Ca2+ and regulates ion transport. Proc. Nat. Acad. Sci., 98: 11749–11754.
Hirzel K., Müller U., Latai A., Hülsmann S., Grundzinska J., Seeliger M. W., Betz H., Laube B. (2006) Hypereplexia phenotype of glycine receptor alpha 1 subunit mutant mice identifies Zn(2+) as an essential andogeneous modulator of glycinergic neurotransmission. Neuron, 52: 679–690.
Holst B., Holliday N., Bach A., Elling Ch. E., Cox H. M., Schwartz Th. W. (2004) Common structural basis for constiturive activity of the ghrelin receptor family. J. Biol. Chem., 279: 53806–53817.
Hosie A. M., Dunne E. L.,Harvey R. J., Smart T. G. (2003) Zinc-mediated inhibition of GABA (A) receptors: discrete binding site underlie subtype specificity. Nat. Neurosci., 6: 362–369.
Jackson V., Nothacker H. P., Civelli O. (2006) GPR39 receptor expression in mous brain Neuroreport, 17: 813–816.
Kalappa B., Anderson Ch., Goldberg J. M., Lippard S. J.,Tzounopoulos Th. (2015) Ampa Receptor inhibition by synaptically released zinc. Proc. Nat. Acad. Sci., 112: 15749–15754.
Kay A. R., Neyton J., Paoletti P. (2006) A starting role for synaptic zinc. Neuron, 52: 572–574.
Khan M. Z. (2016) A possible significant role of zinc and GPR39 zinc-sinsing receptor in Alzheimer disease and epilepsy. Biomed. Pharmacother., 79: 263–272.
Li Y., Hough Ch. J., Suh S. W., Sarwey J. M., Frederickson Ch. J. (2001) Rapid translocation of Zn2+ from presynaptic terminals into postsynaptic hypocampal neurons after physiological stimulation. J. Neurophysiol., 86: 2597–2604.
Lynch J. W., Jaques P., Pierce K. D., Schofield P. R. (1998) Zinc potentiation of the glycine receptor chloride channel is mediated by allosteric pathways. J. Neurochem.,71: 2159–2168.
Lynch J. W. (2004) Molecular structure and function of the glycine receptor chloride channel. Review. Phys. Rev., 84: 1051–1095.
Mattias C. M., Dionisio J. C., Saggau P., Quinta-Ferreira M. E. (2014) Activation of group II metabotropic glutamate receptors blocks zinc release from hippocampal mossy fibers. Biol. Res., 47: 73–79.
McKee K. K., Tan C. P., Palyha O. C., Lin J., Feighner S. D., Hrenink D. L., Smith R. G., Howard A. D., Van der Ploeg I. H. (1997) Cloning and characterization of two human G-protein-coupled receptor genes (GPR38 and GPR39) related to the growth hormone secretagogue and neurotensin receptors. Genomics, 46: 126–134.
Miller P. S., Da Silva H. M., Smart T. G. (2005) Molecular Basis for zinc potentiation at strichnine-sensitive glicine receptor. J. Biol. Chem., 280: 37877–37884.
Mott D. D., Benveniste M., Dingledine R. J. ( 2008) pH-Dependent inhibition of kainate receptors by zinc. J. Neurosci., 13: 1659–1671.
Nevin S. T., Brett A., Cromer B. A., Hadderill J. L., Morton Cr. J., Parker M. W., Lynch J. W. (2003) Insights into the structural basis for zinc inhibition of this glycine receptor. J. Biol. Chem., 276: 28985–28992.
Paoletti P., Ascher P., Neyton J. (1997) High-affinity zinc inhibition of NMDA NR1-NR2A receptors. J. Neurosci., 17: 5711–5725.
Paoletti P.,Vergnano A. M., Barbour B., Casado M. (2009) Zinc at glutamatergic synapses. Neuroscience, 158: 126–136.
Pochwat B., Nowak G., Szewczyk B. (2015) Relationship between zinc (Zn2+ and glutamate receptors in the process underlying neurodegeneration. Review. Neural Plasticity, 591: 563–572.
Popovics P., Stewart A. J. (2011) GPR39: a Zn(2+)-activated G protein-coupled receptor that regulates pancreatic, gastrointestinal and neuronal functions. Cell Mol. Life Sci., 68: 85–95.
Qian H. (2005) GABAC receptors in the vertebrate retina. In Kolb H., Fernandez E., Nelson R. (Eds), Organization of the Retina and and the Visual System.Webvision. University of Utah Health Sdience Center, Salt Lake City.
Qian J., Noebels J. L. (2006) Exocytosis of vesicular zinc reveals persistent depression of neurotransmitter release during metabotrop glutamate receptor long-term depression in the hippocampal CA3-CA1 synapse. J. Neurosci., 26: 6089–6095.
Rassendren F. A., Lory P., Pin J. P., Nargeot J. (1990) Zinc has opposit effects on NMDA and non-NMDA receptors, expressed in Xenopusoocites. Neuron, 4: 733–740.
Ruiz A., Walker M. C., Fabian-Fine R., Kullmann D. M. (2003) Endogeneous zinc inhibits GABAA receptors in a hippocampal pathway. J. Neurophysiol., 91: 1091–1096.
Satala G., Duszynska B., Stachowicz K., Rafalo A., Pochwat B., Luckhart Ch., Albert P. R. Daigle M., Tanaka K., Hen R., Lenda Th., Nowak G., Bojarski A. J., Szewczyk B. (2016) Concentration-dependent dual mode of Zn action at serotonin 5-HTA1 receptors: In vitro and in vivo studies. Review. Mol. Neurobiol., 53: 6869–6881.
Sensi S. L., Paoletti P., Koh J., Aizenman E., Bush A., Hershfinkel M. (2011) The neurophysiology and pathology of brain zinc. Review. J. Neurosci., 31: 16076–16085.
Smart T. G., Moss S. J., Xie Y., Huganir I. (1991) GABAA receptors are differentially sensitive to zinc: dependence on subunit composition. Br. J. Pharmacol., 103: 1837–1839.
Sunuwar I., Gilad D., Hershfinkel M. (2017) The zinc sensing receptor, ZnR/GPR39, in health and disease. Review. Front Biosci., 22: 1460–1492.
Turgeron S. M., Albin R. (1992) Zinc modulators, GABAB binding in rat brain. Brain Res., 596: 30–34.
Xie X., Hider R. C., Smart T. G. (1994) Modulation of GABA-mediated synaptic transmission by endogeneous zinc in the immature rat hippocampus in vitro. J. Physiol., 478: 75–86.
Vergano A., Rebola N., Savchenko L., Pinheiro P., Casado M., Kieffer B., Rusakov D., Muelle C., Paoletti P. (2014) Zinc dynamics and action at excitatory synapses. Review. Neuron, 82: 1101–1114.
Veran J., Kumar J., Pinheiro P. S., Athané A., Mayer M. L., Perraia D., Müller Ch. (2012) Zinc potentiates GLUK3 glutamate receptor function by stabilizing the ligand binding domain dimer interface. Cell Anal. Immunol., 76: 565–578.
Wang T. L., Hackam A., Guggino W. B., Cutting G.R.(1995) A single histidine residue is essential for zinc inhibition of GABA rho 1 receptors. J. Neurosci., 15: 7684–7691.
Wang Z., Li J. Y., Dahlstrom A., Danscher G. (2001) Zinc-enriched GABA-ergic terminals in mouse spinal cord. Brain Res., 921: 165–172.
Westbrook G. L., Mayer M. L. (1987) Micromolar concentrations of Zn2+ antagoniste NMDA and GABA responses in hippocampal neurons. Nature, 328: 640–643.
Zang Y., Keramidas A., Lynch W. J. (2016) The free zinc concentration in the synaptic cleft of artificial glycinergic synapses rises to at least 1 μM. Front Mol. Neurosci., 9: 88–99.
 

Cink az agyban

Tartalomjegyzék


Kiadó: Akadémiai Kiadó

Online megjelenés éve: 2025

Nyomtatott megjelenés éve: 2025

ISBN: 978 963 664 087 3

A cink az élő szervezetek esszenciális mikroeleme. Nagy mennyiségben megtalálható az emberi agyban, az izmokban, a csontokban, a vesében, a májban, a prosztatában és a szemben is. Több száz enzim működésében vesz részt – részben közvetlenül a katalitikus reakciókban, részben az enzimfehérjék koordinátoraként. Jelentős strukturális funkciót tölt be számos transzkripciós faktor szerkezetének kialakításában és a sejtek közötti kommunikációban. Huszti Zsuzsa vizsgálódásának tárgya ezúttal az agy. A kötet külön fejezetekben tárgyalja a cink szerepét az idegsejtekben, a neurofziológiában, a neuoropatológiában, az Alzheimer-kórban (a betegség terápiájában), a memóriában. A szerző széles szakirodalmi bázisra támaszkodva összegzi az ismeretanyagot, és gazdag hivatkozási listával látja el a fejezeteket.

Hivatkozás: https://mersz.hu/huszti-cink-az-agyban//

BibTeXEndNoteMendeleyZotero

Kivonat
fullscreenclose
printsave