Huszti Zsuzsanna

Cink az agyban


Irodalom

Adlard P. A., Parncutt J. M., Lal V., Finkelstein D. I., Bush A. (2010) Cognitive loss in zinc transporter-3-knock-out mice: a phenocopy for the synaptic memory deficits in Alzheimer’s disease. J. Neurosci., 30: 1631–1636.
Adlard P. A., Parncutt J. M., Lal V., James S., Hare D., Doble P., Finkelstein D. I., Bush A. I. (2015) Metal chaperones prevent zinc-mediated cognitive decline. Neurobiol. Dis., 81: 196–202.
Andrews G. K., Wang H., Dey S. K., Palmiter R. D. (2004) Mouse zinc transporter 1 gene provides an essential function during early embryonic development. Genesis, 40: 74–81.
Bellioni-Olivi D., Laal B., Marshall C., Andrews G. K. (2009) Localization of Zip1 and Zip4 mRNAs in the adult brain. J. Neurosci. Res., 87: 3221–3230.
Bishop G. M., Scheiber J. F., Dringen R., Robinson St. R. (2010) Synergestic accumulation of iron and zinc by cultured astrocytes. J. Neural. Transm., 117: 809–817.
Bosonworth H. J., Thorton J. K., Coneworth L. J., Ford D., Valentine R. A. (2012) Efflux function, tissue-specific expression and intracellular trafficking on the Zn transporter ZnT10 indicate roles in adult Zn homeostasis. Metalomics (Integrated Biometal Science), 4: 771–779.
Boycott K. M., Bealieu C. L., Kernohan K. D. et al. (2015) Autosomal-recessive intelectual disability with cerebellar atrophy syndrome caused by the mutation of the manganese and the zinc transporter gene SLC39A8. Am. J. Hum. Genet., 97: 885–893.
Erikson K. M., Thompson K., Aschner J., Aschner M. (2007) Manganese neurotoxicity: A focus on the neonate. Pharmacol. Ther., 113: 369–377.
Girijashanker K., He L., Soleimani L. H., Reed J., Li H., Liu Z., Dalton P., Nebert D. W. (2008) Slc39a14 gene encodes Zip 14, a metal/bicarbonate symporter. Similarities to the Zip8 transporter. Mol. Pharmacol., 73: 1413–1423.
Hara T., Takeda T., Takagishi T., Fukue K., Kambe T., Fukada T. (2017) Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. J. Physiol. Sci., 607: 283–301.
Higashi Y., Segawa S., Matsuo T., Nakamura S., Kikawa Y., Nishida K., Nagasawa K. (2011) Microglial zinc uptake via zinc transporters induces ATP release and the activation of microglia. Glia, 59: 1933–1945.
Jamrozik D., Dutzak R. (2023) Metallothioneins, a Part of the Retinal Endogenous Protective System in Various Ocular Diseases. Antioxidants, 12(6): 1251.
Jeong J., Eide D. J. (2013) The SLC39 family of zinc transporters. Mol. Aspects Med., 34: 612–619.
Kambe T., Tsuji T., Hashimoto A., Itsumura N. (2015) The physiological, biochemical and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol. Rev., 95: 749–784.
Kimura T., Kambe T. (2016) The functions of metallothionein and Zip and ZnT transporters: An overwiew and perspective. Int. J. Mol. Sci.,17: 336–358.
Lee S., Koh J. (2010) Roles of zinc and metallothionein 3 in oxidative stress-induced lysosomal dysfunction, cell death and autophagy in neurons and astrocytes. Mol. Brain, 3: 30–39.
Levy S., Beharier O., Elzion Y., Mor M., Buzaglo L., Shaltiel L., Gheber L. A., Kahn J., Muslin A. J., Katz A., Gitler D., Moran A. (2009) Molecular basis of zinc transporter 1 action as an endogeneous inhibitor of L-type calcium channels. Biol. Chem., 284: 32434–32443.
Leyva-Illades D., Chen P., Zogzas Ch. F., Hutchens St., Mercado J. M., Swaim C. D., Morrisett R. A., Bowman A. B., Aschner M., Mukhopadhyacy S. (2014) SLC30A10 is a cell-surface-localized manganese efflux transporter and Parkinsonism causing mutations blocks its intracellular trafficking and efflux activity. J. Neurosci., 34: 14079–14095.
Liuzzi J. P., Cousins R. J. (2004) Mammalian zinc transporters. Annu. Rev. Nutr., 24: 151–172.
Maret W. (2009) Molecular aspects of human cellular zinc homeostasis: redox control of zinc potentials and zinc signals. Biometals, 22: 149–157.
Martel G., Hevi C. H., Friebey O., Baybutt T., Shumyatsky G. B. (2010) Zinc transporter 3 is involved learned fear and extinction, but not in innate fear. Learn. Mem., 17: 582–590.
Myazaki I., Asanuma M. (2023) Multifunctional Metallothioneins as a Target for Neuroprotection in Parkinson’s Disease. Antioxidants, 12(4): 894.
Nishida K., Hasegawa A., Nakae S., Oboki K., Saito H., Yamasaki S., HiranoT. (2009) Zinc transporter ZnT5/SLC30a5 is required for the mast cell-mediated delayed-type allergic reaction but not the immediate-type reaction. J. Exp. Med., 206: 1351–1364.
Nishito Y., Kambe T. (2019) Zinc transporter 1 (ZnT1) on the cell surface is elaboratelly by cellular zinc levels. J. B. C., 294: 15656–15681.
Ohana E., Segal D., Palty R., Ton-That D., Moran A., Sensi S., Weiss J.H., Hershfinkel M., Sekler I. (2004) A sodium zinc exchange mechanism is mediating extursion of zinc in mammalian cells. J. B. C., 279: 4278–4284.
Palmiter R. D., Findley S. D. (1995) Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO, 14: 639–649.
Palmiter R. D., Cole T. B., Qaife C. J., Findley S. D. (1996) ZnT3 a putative transporter of zinc into synaptic vesicles. Proc. Natl. Acad. Sci., 93: 14934–14939.
Pan R., Liu K. J. (2016) ZnT1 expression reduction enhances free zinc accumulation in astrocytes after ischemic stroke. Acta Neurochirurg Suppl., 121: 257–261.
Park J. H., Hogrebe M., Grünberg M., Duchesne I., Von der Heiden A., Schligmann K. P. et al. (2015) SLC39A8 deficiency: A disorder of manganese transport and glycolisation. Am. J. Human Genet. 87894–903.
Quadri M., Federico A., Chao T., Breedveld G. J., Battisti C. Delnooz C. et al. (2012) Mutations in SCl30A10 cause parkinsonism and dystonia with hypermanganese, polycythemia and chronic liver disease. Am. J. Human Gen., 90: 467–477.
Quian J., Xu K., Yoo J., Chen T. T., Andrews G., Noebels J. E. (2011) Knockout of Zn transporters Zip1 and Zip3 attenuetes seizure-induced CA1 neurodegeneration. J. Neurosci., 31: 97–104.
Roth J. A. (2009) Are there common biochemical and molecular mechanisms controlling manganism and Parkinsonism. Neuromol. Med., 11: 281–296.
Salazar G., Craige B., Love R., Kalman D. (2005) Vglut1 and ZnT3 co-targeting mechanisms regulate vesicular zinc stores in PC12 cells. J. Cell Sci., 118: 1911–1921.
Saito T., Takahashi K., Nakagawa N., Hosokawa T., Kurasaki M., Yamanoshita O., Sasaki H., Nagashima K., Fujita H. (2000) Deficiencies of hippocampal Zn and ZnT3 accelerate brain aging of rat. Biochem. Biophys. Res. Comm., 279: 505–511.
Santos C. R. A., Martinho A., Quintela T., Convales I. (2012) Neuroprotective and neuroregenerative properties of metallothioneins. Life, 64: 126–135.
Segal D., Ohana E., Besser L., Hershfinkel M., Moran A., Sekler I. (2004) The role for ZnT1 regulating cellular cation influx. Biochem. Biophys. Res. Com., 323: 1145–1150.
Sekler I., Sensi S., Hershfinkel M., Silverman W. F. (2007) Mechanism and regulation of cellular zinc transport. Mol. Med., 13: 337–343.
Tuschl K., Meyer E., Wilson S. W. (2016) Mutations in SLC39A14 disrupt manganese homeostasis and cause childhood-onset parkinsonism-dystonia. Nature Comm., 7: 11601–11665.
Wahlberg K., Kippler M., Alhamdov A., Rahman S. M., Smith D. R. et al. (2016) Common polymorphisms in the solute carrier SLCA10 are associated with blood manganase and neurological function. Toxicol. Sci., 149: 2–62.
Wang Z. Y., Stoltenberg M., Huang L., Danscher G., Dahlstrom A., Shi Y. et al. (2005) Abundant expression of zinc transporters in Bergman glia of mouse cerebellum. Brain Res. Bull., 64: 441–448.
Wenzel H. J., Cole T. B., Born D. E., Schwartzkroin P. A., Palmiter R. D. (1997) Ultrastructural localization of zinc transporter 3 (ZnT3) to synaptic vesicle membranes within mossyfiber boutons in the hippocampus of mouse and monkey. Proc. Nat. Acad. Sci., 94: 1276–12681.
Xu Y, Xiao G., et al. (2019) Zinc transporters in Alzheimer’s disease. Mol Brain, 12, 106.

Cink az agyban

Tartalomjegyzék


Kiadó: Akadémiai Kiadó

Online megjelenés éve: 2025

Nyomtatott megjelenés éve: 2025

ISBN: 978 963 664 087 3

A cink az élő szervezetek esszenciális mikroeleme. Nagy mennyiségben megtalálható az emberi agyban, az izmokban, a csontokban, a vesében, a májban, a prosztatában és a szemben is. Több száz enzim működésében vesz részt – részben közvetlenül a katalitikus reakciókban, részben az enzimfehérjék koordinátoraként. Jelentős strukturális funkciót tölt be számos transzkripciós faktor szerkezetének kialakításában és a sejtek közötti kommunikációban. Huszti Zsuzsa vizsgálódásának tárgya ezúttal az agy. A kötet külön fejezetekben tárgyalja a cink szerepét az idegsejtekben, a neurofziológiában, a neuoropatológiában, az Alzheimer-kórban (a betegség terápiájában), a memóriában. A szerző széles szakirodalmi bázisra támaszkodva összegzi az ismeretanyagot, és gazdag hivatkozási listával látja el a fejezeteket.

Hivatkozás: https://mersz.hu/huszti-cink-az-agyban//

BibTeXEndNoteMendeleyZotero

Kivonat
fullscreenclose
printsave