Huszti Zsuzsanna

Cink az agyban


Irodalom

Adlard P. A., Cherny R. A., Finkelstein D. I., Gouter E., Robb E., Cottes M., Voltakis I. et al. (2008) Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial abeta. Neuron, 59: 43–55.
Adlard P. A., Parcutt J. M., Finkelstein D. I., Bush A. I. (2010) Cognitive loss in zinc transporter-3 knock-out mice: a phenocopy for the synaptic and memory deficits of Alzheimer’s disease? J. Neurosci., 30: 1631–1636.
Adlard P. A., Bush A. I. (2012) Metal charperones: A holistic approach to the treatment of Alzheimer’s disease. Front Psychiatry, 3: 15–25.
Atwood C. S., Moir R. D., Huang X., Scarpa R. C. S., Bacarra N. M., Romano D. M., Hartshorn M. A., Tanzi R. E., Bush A. I. (1998) Dramatic aggregation of Alzheimer’s abeta by Cu(II) is induced by conditions representing physiological acidosis. J. Biol. Chem., 273: 12817–12826.
Axelsen P. H., Komatsu H., Murray I. J. V. (2011) Oxidative stress and cell membranes in the pathogenesis of Alzheimer’s disease. Review. Phys., 26: 54–69.
Beyer N., Coulsen D. T., Heggarty S., David R., Hellemans J., Irwine G. B., Johnson J. A. (2012) Zinc transporter mRNA levels in Alzheimer’s disease post mortem brain. J. Alzheimer’s, Disease 29: 863–873.
Brion J. P. (1998) Neurofibrillary tangles and Alzheimer’s disease. Review. Eur. Neurol., 40: 130–140.
Bush A. I., Pettingell W. H., Multhaupt G., et al. (1994) Rapid induction of Alzheimer’s Aβ amiloid formation by zinc. Science, 265: 13523–13532.
Bush A. I. (2003) The metallobiology of Alzheimer’s disease. Review. Trends Neurosci., 26: 207–214.
Bush A. I. (2008) Drug development based on the metals hypothesis of Alzheimer’s disease. J. Alzheimer’s disease, 15: 223–240.
Charter-Harlim M. C., Crawford F., Houlden H. (1991) Early-oneset Alzheimer’s disease caused by mutations at codon 717 of the β-amyloid precursor protein gene. Nature, 353: 844–846.
Cherny R. A., Atwood C. S., Xilinas M. E., Gray D. N., Jones W. D., McLean C. A., Barnham K. J., Voltakis I., Fraser F. W., Kim Y. et al. (2001) Treatment with a copper-zinc-chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron, 30: 665–676.
Coman H., Nemes B. (2017) New therapeutic targets in Alzheimer’s disease. Review. Int. J. Gerontology, 11: 2–6.
Crouch P. J., Barnham K. J. (2011) Therapeutic redistribution of metal ions to treat Alzheimer’s disease. Acc. Chem. Res., 45: 1604–1610.
Cuajungco M. P., Lees G. J. (1997) Zinc and Alzheimer’s disease: is there a direct linc? Review. Brain Res. Reviews, 23: 219–236.
Cuajungco M. P., Faget K. Y., Huang X., Tanzi R. E., Bush A. I. (2000) Metal Chelation as a potential therapy for Alzheimer’s disease. Review. Ann. N.Y. Acad. Sci., 920: 292–304.
Cummings J., Lee G., Nahed P., Kambar M. E. Z. N., Zhong K., Fonseca J., Taghva K. (2022) Alzheimer’s disease drug development pipeline: 2022. Review. Translational Research et Clinical Interventions, 8: e12295.
Cui Z., Lockman P. R., Atwood C. S., Hsu Ch., Gupte A., Allen D. D., Mumper R. (2005) Novel D-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer’s and other CNS diseases. Eur. J. Pharmaceutics and Biopharmaceutics, 59: 263–272.
Ellison J. M. (2021a) The history of Alzheimer’s disease. Bright Focus Found. in Alzheimer’s Disease Research, július.
Ellison J. M. (2021b) What’s new in the Alzheimer’s treatment pipeline? Bright Focus in Alzheimer’s Disease Research, augusztus.
Faux N. G., Ritchie C. W., Gunn A., Rembach A., Tsatsanus A., Bedo J., Harrison J., Lannfelt L., Bennov K., Zetterberg H. et al. (2010) PBT2 rapidly improves cognition in Alzheimer’s disease: Additional phase II. analysis. J. Alzheimer’s Disease, 20: 509–516.
Gerber H., Wu F., Dimitrov M., Osuna G. M. G., Fraering P. C. (2017) Zinc and copper differently modulate amyloid precursor protein processing by γ-secretase and amyloid-β peptide production. Review. Mol. Bas. Dis., 292: 3751–3767.
Ibach B., Haen E., Marienhagen J., Hajek G. (2005) Clioiquinol treatment in familiar early set of Alzheimer’s disease: a case report. Pharmacopsychiatry, 38: 178–179.
Johansson A., Berglind-Dehlin F., Karlsson G., Edwards K., Gellerfors P., Lannfelt L. (2006) Physiochemical characteruzation of the Alzheimer’s disease-related peptides Aβ1-42 wt. FEBS Journal, 273: 2618–2630.
Kulenkampff K., Wolf Perez A., Sormanni P., Habchi J., Vendruscolo M. (2021) Quantifying misfolded protein oligomers as drug target s an biomarkers in Alzheimer and Parkinson diseases. Review. Nature Reviews Chemistry, 5: 274–294.
Lannfelt I., Blennow K., Zefferberg H., Batsman S., Ames D., Herrison J. et al. (2008) Safety, efficiacy and biomaker findings of PBT2 in targeting a beta as a modifying therapy of Alzheimer’s disease in in phase II. double-band randmised placebo-controlled-trial. Lancet Neurol., 7: 779–786.
Lee J. Y., Cho E., Seo J. W., Hwang J. J., Koh J. Y. (2012) Alteration of cerebral zinc pool in a mouse model of Alzheimer’s disease. J. Neuropathol.Exp. Neurol., 71: 211–222.
Levenson C. W. (2020) Zinc and traumatic brain injury: From chelation to supplementation. Review. Med. Sci., 8: 36–62.
Levy-Lahad E., Wusman E.M., Nemens E. et al. (1995) A familial Alzheimer’s disease locus on chromosome-1. Science, 269: 970–973.
Lim K. H., Kim Y. K., Chang Y. T. (2007) Investigations of the molecular mechanism of metal-induced Aβ(1-40) amyloidogenesis. Biochemistry, 46: 13523–13532.
Lovell M. A., Robertson J. D., Teesdale W. D., Campbell J. I., Markesberg W. R. (1998) Copper, iron and zinc in Alzheimer’s senile plaques. J. Neurol. Sci., 158: 47–52.
Lovell M. A., Smith J. L., Xiong S., Markesbery W. R. (2005) Alterations in zinc transporter protein-1 (ZnT-1) in the brain of subjects with mild cognitive impairment, early and late stage of Alzheimer’s disease. Neurotoxicity Research, 7: 265–271.
Lovell M. A. (2009) A potential role of alterations of zinc and zinc transport proteins in the progression of Alzheimer’s disease. Review. J. Alzheimer’s Dis., 16: 471–483.
Lyubartseva G., Smith J., Markesbery W. R., Lovell M. A. (2010) Alterations of zinc transporter protein ZnT-1, ZnT-4 and ZnT-6 in preclinical Alzheimer’s disease brain. Brain Pathol., 20: 343–350.
Miller L. M., Wang Q., Teloival T. P., Smith R. J., Lazirotti A., Miklossy J. (2006) Synchroton-based and x-ray imaging shows focalized accumulation of Cu and Zn co-localized with β-amiloid deposits in Alzheimer’s disease. J. Structural Biology, 155: 30–37.
Multhaup G., Schlicksupp A., Hesse E., Beher D., Rupport C., Masters C. L., Beyreuther K. (1996) The amyloid precursor protein Alzheimer’s disease in the reduction of copper(II) to copper(I). Science, 271: 1406–1409.
Prana Biotechnology Lim. (2013) Therapeutics PBT2. Alzforum. Reitz Ch. (2012) Alzheimer’s disease and amyloid cascade hypothesis: a critival review. Review. Int. J. Alzheimer’s Disease, 2012: 3698108–36981019.
Ritchie C. W., Bush A. I., Mackinnon A., Macfarlane S., Mastwyk M., MacGregor L., Kiers L., Cherny R., Li Q. X., Tammaer A. et al. (2003) Metal-protein alteration with iodo- chlorohydroxyquinoline (clioquinol) targeting A-beta amyloide deposition and toxicity in Alzheimer’s disease: a pilot phase 2 clinical trial. Arch. Neurol., 60: 1685–1691.
Rivers-Auty J., Tapia V. S., White C. S., Daniels M. J. D., Drinkall S., Kennedy P. T., Spence H. G., Yu S., Green J., Hoyle Ch. et al. (2021) Zinc status alters Alzheimer’s disease progression through NLRP-3-dependent inflammation. J. Neurosci., 41: 3025–3038.
Roda A. R., Serra-Mir G., Montoliu-Gaya L., Tiessler L., Villegas S. (2022) Amyloid-beta peptide and tau protein crosstalk in Alzheimet’s disease. Neural. Regen. Res., 8: 1666–1674.
Roy S., Gumulec J., Kumar A., Raudenska M., Baig M. H., Polanska H., Balvan J., Gupta M., Babula P., Odstroillik J., Choi Y., Povaznik I., Masarik M. (2017) The effect of Benzothiazolone-2 on the expression of metallothionein-3 is modulating Alzheimer’s disease. Brain Behav., 7: e00799.
Sampson F. L., Jenagaratnam L., McSchane R. (2014) Metal protein attanuating compounds for the Alzheimer’s dementia. Cochrane Database Syst. Rev., 2: CD005380.
Sanders A. M., Srittmatter W. J., Schmetchet D. et al.(1993) Association of apolipoprotein E allele 4, late-one-set familiar and sporadic Alzheimer’s disease. Neurology, 48: 1467–1472.
Scherrington R., Rogaev E. T., Liang Y. et al. (1995) Cloning of a gene bearing mis-sense mutation in early-onset familial Alzheimer disease. Nature, 375: 755–760.
Schubert D., Chevion M. (1995) The role of iron in beta-amyloid toxicity. Biochem. Biophys. Res. Commun., 216: 702–707.
Sensi S. L., Granzotto A., Siotto M., Squitti R. (2018) Copper and zinc dysregulation in Alzheimer’s disease. Review. Trends Pharmacol. Sci., 39: 1049–1063.
Summers K. L., Roseman G., Schilling K. M., Dolgova N. V., Pushie M. J., Sokaras D., Harris N. N., Millh G. L., Pukering I. J., George G. N. (2022) Alzheimer’s drug PBT2 interacts with the amyloide 1-42 peptide differently than other 8-hydroxy-quinoline chelating drugs. Inorg. Chem., 61: 14626–14640.
Squitti R., Siotto M., Rossi R. L. (2016) Non-cerulplazmin bound copper and ATP7B gene variants in Alzheimer’s disease. Metallomics, 8: 863–873.
Squitti R., Pal A., Picozza M., Avan A., Ventriglia M., Rongioletti M. C., Hoogenraad T. (2020) Zinc therapy in early Alzheimer’s disease and potential therapeutic efficiency. Review. Biomolecules, 10: 11464–11493.
Vilella A., Belleti D., Sauer A. K., Hagmeyer S., Sarowar T., Masoni M., Stasiak N., Mulvihill J. J. E., Ruozi Z., Forni F., Vandelli A. Q., Tosi G., Zoli M., Grabrucker A. M. (2018) Reduced plaque size and inflammation in the APP23 model for Alzheimer’s disease after chronic application of polimeric nanopaticles for CNS targeted zinc delivery. Trace Elem Med. Biol., 49: 210–221.
Walsh D. M., Lomakin A., Benedek G. B., Condron M. M., Teplow D. B. (1997) Amyloid beta-protein fibrillogenesis. Detection protofibrillar intermediate. J. Biol. Chem., 272: 22364–22372.
Watt N., Whitehose I. J., Hooper N. M. (2011) The role of zinc in Alzheimer’s disease. Review. Int. J. Alzheimer’s Disease, 97: 1021–1031.
Xie Z., Wu H., Zhao J. (2020) Multifunctional roles for zinc in Alzheimer’s disease. Neuro-Toxicol., 80: 112–123.
Xu Y., Xiao G., Liu L., Lang M. (2019) Zinc transporters in Alzheimer’s disease. Review. Molecular Brain, 12: 106–118.
Zhang L. H., Wang X., Zheng Z. H., Ren H., Stoltenberg M., Danscher G., Huang I., Rong M., Wang Z. Y. (2010) Altered expression and contribution of zinc transporters in APP/PS1 transgenic mouse brain. Neurobiol. Aging, 31: 74–87.
 
 

Cink az agyban

Tartalomjegyzék


Kiadó: Akadémiai Kiadó

Online megjelenés éve: 2025

Nyomtatott megjelenés éve: 2025

ISBN: 978 963 664 087 3

A cink az élő szervezetek esszenciális mikroeleme. Nagy mennyiségben megtalálható az emberi agyban, az izmokban, a csontokban, a vesében, a májban, a prosztatában és a szemben is. Több száz enzim működésében vesz részt – részben közvetlenül a katalitikus reakciókban, részben az enzimfehérjék koordinátoraként. Jelentős strukturális funkciót tölt be számos transzkripciós faktor szerkezetének kialakításában és a sejtek közötti kommunikációban. Huszti Zsuzsa vizsgálódásának tárgya ezúttal az agy. A kötet külön fejezetekben tárgyalja a cink szerepét az idegsejtekben, a neurofziológiában, a neuoropatológiában, az Alzheimer-kórban (a betegség terápiájában), a memóriában. A szerző széles szakirodalmi bázisra támaszkodva összegzi az ismeretanyagot, és gazdag hivatkozási listával látja el a fejezeteket.

Hivatkozás: https://mersz.hu/huszti-cink-az-agyban//

BibTeXEndNoteMendeleyZotero

Kivonat
fullscreenclose
printsave