Kun Róbert (szerk.)

Energiatárolási és akkumulátoripari alapismeretek

Fejezetek a villamosenergia-rendszerek, az elektrokémiai és további energiatárolási technológiák témaköréből


4. Irodalom

[1] J. M. Tarascon, M. Armand (2010): Issues and challenges facing rechargeable lithium batteries. In Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific Publishing Co., 171–179. https://doi.org/10.1142/9789814317665_0024
[2] B. Scrosati (2011): History of lithium batteries, J. Solid State Electrochemistry, 15:7–8, 1623–1630. https://doi.org/10.1007/s10008-011-1386-8
[3] M. Stanley Whittingham, Fred R. Gamble (1975): The lithium intercalates of the transition metal dichalcogenides, Materials Research Bulletin, 10:5, 363–371. https://doi.org/10.1016/0025-5408(75)90006-9
[4] Goodenough JB (1981): Electrochemical cell with new fast ion conductors, U.S. Pat., 4,302,518, Nov. 24, 1981.
[5] Akira Yoshino, Fujisawa; Kenichi Sanechika; Takayuki Nakajima (1987): Secondary Battery, US Pat. 4,668,595, May 26, 1987.
[6] J.-M. Tarascon (2010): Key challenges in future Li-battery research, Phil. Trans. R. Soc. A. 368, 3227–3241. https://doi.org/10.1098/rsta.2010.0112
[7] B. Dunn, H. Kamath, J. T. Tarascon (2011): Electrical Energy Storage for the Grid: A Battery of Choices, Science, 334, 928–935. https://doi.org/10.1126/science.1212741
[8] C. Grosjean, P. Herrera Miranda, M. Perrin, P. Poggi (2012): Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry, Renewable and Sustainable Energy Reviews, 16:3, 1735–1744. https://doi.org/10.1016/j.rser.2011.11.023
[9] J. Speirs, M. Contestabile, Y. Houari, R. Gross (2014): The future of lithium availability for electric vehicle batteries, Renewable and Sustainable Energy Reviews, 35, 183–193. https://doi.org/10.1016/j.rser.2014.04.018
[10] B. L. Ellis, L. F. Nazar (2012): Sodium and sodium-ion energy storage batteries, Current Opinion in Solid State and Materials Science, 16:4, 168–177. https://doi.org/10.1016/j.cossms.2012.04.002
[11] Z. Z. Karger, R. Liu, W. Dai, Z. Li, T. Diemant, B. P. Vinayan, C. B. Minella, X. Yu, A. Manthiram, R. J. Behm, M. Ruben, M. Fichtner (2018): Toward Highly Reversible Magnesium–Sulfur Batteries with Efficient and Practical Mg[B(hfip)4]2 Electrolyte, ACS Energy Lett., 3:8, 2005–2013. https://doi.org/10.1021/acsenergylett.8b01061
[12] Kirby W. Beard Editor, Thomas B. Reddy (Eds): Linden’s Handbook of Batteries, Fifth Edition; ISBN: 978-1-260-11592-5
[13] M. S. Whittingham (2004): Lithium batteries and cathode materials, Chem. Rev., 104:10, 4271–4302. https://doi.org/10.1021/cr020731c
[14] Bruce, P., Scrosati, B. and Tarascon, J.-M. (2008): Nanomaterials for Rechargeable Lithium Batteries, Angewandte Chemie International Edition, 47, 2930–2946. https://doi.org/10.1002/anie.200702505
[15] D. Aurbach (2003): Electrode–solution interactions in Li-ion batteries: a short summary and new insights, J. Power Sources, 119–121, 497–503. https://doi.org/10.1016/S0378-7753(03)00273-8
[16] C. M. Julien, A. Mauger, K. Zaghib, H. Groult (2014): Comparative Issues of Cathode Materials for Li-Ion Batteries. Inorganics, 2, 132–154. https://doi.org/10.3390/inorganics2010132
[17] K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough (1980): LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density, Mat. Res. Bull., 15:6, 783–789. https://doi.org/10.1016/0025-5408(80)90012-4
[18] Z. Lu, D. D. Macneil, J. R. Dahn (2001): Layered Li[NixCo1-2x Mnx]O2 Cathode Materials for Lithium-Ion Batteries, Electrochem. Solid-State Lett., 4 A200. https://doi.org/10.1149/1.1413182
[19] M. M. Thackeray, W. I. F. David, P. G. Bruce, J. B. Goodenough (1983): Lithium insertion into manganese spinels, Mat. Res. Bull., 18:4, 461–472. https://doi.org/10.1016/0025-5408(83)90138-1
[20] A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough (1997): Phospho-Olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. Journal of The Electrochemical Society, 144, 1188–1194. http://dx.doi.org/10.1149/1.1837571
[21] C. Delacourt, P. Poizot, S. Levasseur, C. Masquelier (2006): Size Effects on Carbon-Free LiFePO4 Powders – The Key to Superior Energy Density, Electrochem Solid-State Lett., 9:7, A352–A355. https://doi.org/10.1149/1.2201987
[22] Y. He et al. (2019): Origin of lithium whisker formation and growth under stress, Nat. Nanotechnol., 14, 1042–1047. https://doi.org/10.1038/s41565-019-0558-z
[23] D. Guerard, A. Herold (1975): Intercalation of lithium into graphite and other carbons, Carbon, 13:4, 337–345. https://doi.org/10.1016/0008-6223(75)90040-8
[24] C. S. Wang, G. T. Wu, W. Z. Li (1998): Lithium insertion in ball-milled graphite, J. Power Sources, 76:1, 1–10. https://doi.org/10.1016/S0378-7753(98)00114-1
[25] G. Maurin, Ch. Bousquet, F. Henn, P. Bernier, R. Almairac, B. Simon (1999): Electrochemical intercalation of lithium into multiwall carbon nanotubes, Chemical Physics Letters, 312:1, 14–18. https://doi.org/10.1016/S0009-2614(99)00886-6
[26] C. Casas, W. L (2012): A review of application of carbon nanotubes for lithium ion battery anode material, J. Power Sources, 208, 74–85. https://doi.org/10.1016/j.jpowsour.2012.02.013
[27] M. Vijayakumar, S. Kerisit, K. M. Rosso, S. D. Burton, J. A. Sears, Z. Yang, G. L. Graff, J. Liu, J. Hu (2011): Lithium diffusion in Li4Ti5O12 at high temperatures, J. Power Sources, 196:4, 2211–2220. https://doi.org/10.1016/j.jpowsour.2010.09.060
[28] L. Aldon, P. Kubiak, M. Womes, J. C. Jumas, J. Olivier-Fourcade, J. L. Tirado, J. I. Corredor, C. Pérez Vicente (2004): Chemical and electrochemical Li-insertion into the Li4Ti5O12 spinel, Chem. Mater., 16:26, 5721–5725. https://doi.org/10.1021/cm0488837
[29] T.-F. Yi, L.-J. Jiang, J. Shu, C.-B. Yue, R.-S. Zhu, H.-B. Qiao (2010): Recent development and application of Li4Ti5O12 as anode material of lithium ion battery, J. Physics and Chemistry of Solids, 71:9, 1236–1242. https://doi.org/10.1016/j.jpcs.2010.05.001
[30] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon (2000): Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature, 407, 496–499. https://doi.org/10.1038/35035045
[31] J. Cabana, L. Monconduit, D. Larcher, M. R. Palacín, Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions (2010): Adv. Mater., 22:35, E170–E192. https://doi.org/10.1002/adma.201000717
[32] P. L. Taberna, S. Mitra, P. Poizot, P. Simon, J. M. Tarascon (2006): High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications, Nature Materials, 5:7, 567–573. https://doi.org/10.1038/nmat1672
[33] C. R. Birkl, M. R. Roberts, E. McTurk, P. G. Bruce, D. A. Howey (2017): Degradation diagnostics for lithium ion cells, J. Power Sources, 341, 373–386. https://doi.org/10.1016/j.jpowsour.2016.12.011
[34] S. Watanabe, M. Kinoshita, K. Nakura (2014): Capacity fade of LiNi(1−x−y)CoxAlyO2 cathode for lithium-ion batteries during accelerated calendar and cycle life test. I. Comparison analysis between LiNi(1−x−y)CoxAlyO2 and LiCoO2 cathodes in cylindrical lithium-ion cells during long term storage test, J. Power Sources, 247, 412–422. https://doi.org/10.1016/j.jpowsour.2013.08.079
[35] V. Agubra, J. Fergus (2013): Lithium Ion Battery Anode Aging Mechanisms, Materials, 6, 1310–1325. https://doi.org/10.3390/ma6041310
[36] J. Vetter, P. Novák, M. R. Wagner, C. Veit, K.-C. Möller, J. O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche (2005): Ageing mechanisms in lithium-ion batteries, J. Power Sources, 147:1–2, 269–281. https://doi.org/10.1016/j.jpowsour.2005.01.006
[37] E. Peled, D. Golodnitsky, G. Ardel (1997): Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes, J. Electrochem. Soc., 144, L208. https://doi.org/10.1149/1.1837858
[38] P. Verma, P. Maire, P. Novák (2010): A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochimica Acta, 55:22, 6332–6341. https://doi.org/10.1016/j.electacta.2010.05.072
[39] M. Broussely, Ph. Biensan, F. Bonhomme, Ph. Blanchard, S. Herreyre, K. Nechev, R. J. Staniewicz (2005): Main aging mechanisms in Li ion batteries, J. Power Sources, 146:1–2, 90–96. https://doi.org/10.1016/j.jpowsour.2005.03.172
[40] T. Ohzuku, R. J. Brodd (2007): An overview of positive-electrode materials for advanced lithium-ion batteries, J. Power Sources, 174:2, 449–456. https://doi.org/10.1016/j.jpowsour.2007.06.154
[41] G. G. Amatucci, J. M. Tarascon, L. C. Klein (1996): Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries, Solid State Ionics, 83:1–2, 167–173. https://doi.org/10.1016/0167-2738(95)00231-6
[42] D. P. Abraham, E. M. Reynolds, E. Sammann, A. N. Jansen (2005): D. W. Dees, Aging characteristics of high-power lithium-ion cells with LiNi0.8Co0.15Al0.05O2 and Li4/3Ti5/3O4 electrodes, Electrochimica Acta, 51:3, 502–510. https://doi.org/10.1016/j.electacta.2005.05.008
[43] D. P. Abraham, R. D. Twesten, M. Balasubramanian, I. Petrov, J. McBreen, K. Amine (2002): Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells, Electrochemistry Communications, 4:8, 620–625. https://doi.org/10.1016/S1388-2481(02)00388-0
[44] H. Budde-Meiwes, J. Drillkens, B. Lunz, J. Muennix, S. Rothgang, J. Kowal, D. U. Sauer (2013): A review of current automotive battery technology and future prospects, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 227:5, 761–776. https://doi.org/10.1177/0954407013485567
[45] Y. Kato, K. Kawamoto, R. Kanno, M. Hirayama (2012): Discharge Performance of All-Solid-State Battery Using a Lithium Superionic Conductor Li10GeP2S12, Electrochemistry, 80:10, 749–751. https://doi.org/10.5796/electrochemistry.80.749
[46] M. Armand (1994): The history of polymer electrolytes, Solid State Ionics, 69: 3–4, 309–319. https://doi.org/10.1016/0167-2738(94)90419-7
[47] R. Bouchet, S. Lascaud, M. Rosso (2003): An EIS Study of the Anode Li/PEO-LiTFSI of a Li Polymer Battery, J. Electrochem. Soc., 150:10, A1385. https://doi.org/10.1149/1.1609997
[48] J. C. Bachman, S. Muy, A. Grimaud, H.-H. Chang, N. Pour, S. F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, Y. Shao-Horn (2016): Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction, Chem. Rev., 116:1, 140–162. https://doi.org/10.1021/acs.chemrev.5b00563
[49] Y. S. Jung, D. Y. Oh, Y. J. Nam, K. H. Park (2015): Issues and Challenges for Bulk-Type All-Solid-State Rechargeable Lithium Batteries using Sulfide Solid Electrolytes, Isr. J. Chem., 55, 472–485. https://doi.org/10.1002/ijch.201400112
[50] J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck, J. D. Robertson (1993): Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries, J. Power Sources, 43:1–3, 103–110. https://doi.org/10.1016/0378-7753(93)80106-Y
[51] F. Wu, J. Maier, Y. Yu (2020): Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries, Chem. Soc. Rev., 49, 1569–1614. https://doi.org/10.1039/c7cs00863e
[52] R. Fang, S. Zhao, Z. Sun, D.-W. Wang, H.-M. Cheng, F. Li (2017): More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects, Adv. Mater., 29, 1606823. https://doi.org/10.1002/adma.201606823
[53] Y. Chen, T. Wang, H. Tian, D. Su, Q. Zhang, G. Wang (2021): Advances in Lithium–Sulfur Batteries: From Academic Research to Commercial Viability, Adv. Mater., 33, 2003666. https://doi.org/10.1002/adma.202003666
[54] L. Huang, J. Li, B. Liu, Y. Li, S. Shen, S. Deng, C. Lu, W. Zhang, Y. Xia, G. Pan, X. Wang, Q. Xiong, X. Xia, J. Tu (2020): Electrode Design for Lithium–Sulfur Batteries: Problems and Solutions, Adv. Funct. Mater., 30, 1910375. https://doi.org/10.1002/adfm.201910375
[55] Y. Huang, L. Lin, C. Zhang, L. Liu, Y. Li, Z. Qiao, J. Lin, Q. Wei, L. Wang, Q. Xie, D.-L. Peng (2022): Recent Advances and Strategies toward Polysulfides Shuttle Inhibition for High-Performance Li–S Batteries; Adv. Sci., 9, 2106004. https://doi.org/10.1002/advs.202106004
[56] G. B. Haxel, J. B. Hedrick, G. J. Orris (2002): Rare earth elements: critical resources for high technology, US Department of the Interior, US Geological Survey (last modified: May 17, 2005). http://geopubs.wr.usgs.gov/fact-sheet/fs087-02/
[57] R. Mohtadi, F. Mizuno (2014): Magnesium batteries: Current state of the art, issues and future perspectives, Beilstein J. Nanotechnol., 5, 1291–1311. https://doi.org/10.3762/bjnano.5.143
[58] N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba (2014): Research development on sodium-ion batteries, Chem. Rev., 114:23, 11636–11682. https://doi.org/10.1021/cr500192f
[59] J. Kim, D.-H. Seo, H. Kim, I. Park, J.-K. Yoo, S.-K. Jung, Y.-U. Park, W. A. Goddard III, K. Kang (2015): Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries, Energy Environ. Sci., 8, 540–545. https://doi.org/10.1039/C4EE03215B
[60] K. Chayambuka, G. Mulder, D. L. Danilov, P. H. L. Notten (2018): Sodium-ion battery materials and electrochemical properties reviewed, Adv. Energy Mater., 8, 1800079. https://doi.org/10.1002/aenm.201800079
[61] K. M. Abraham (2020): How comparable are sodium-ion batteries to lithium-ion counterparts? ACS Energy Lett., 5:11, 3544–3547. https://doi.org/10.1021/acsenergylett.0c02181
[62] J. Smekens, R. Gopalakrishnan, N. van den Steen, N. Omar, O. Hegazy, A. Hubin, J. Van Mierlo (2016): Influence of Electrode Density on the Performance of Li-Ion Batteries: Experimental and Simulation Results, Energies, 9, 104. https://doi.org/10.3390/en9020104
[63] E. N. Primo, M. Chouchane, M. Touzin, P. Vazquez, A. A. Franco (2021): Understanding the calendering processability of Li(Ni0.33Mn0.33Co0.33)O2-based cathodes, J. Power Sources, 488, 229361. https://doi.org/10.1016/j.jpowsour.2020.229361
[64] M. P. Lautenschlaeger, B. Prifling, B. Kellers, J. Weinmiller, T. Danner, V. Schmidt, A. Latz (2022): Understanding Electrolyte Filling of Lithium-Ion Battery Electrodes on the Pore Scale Using the Lattice Boltzmann Method, Batteries & Supercaps, 5, e202200090. https://doi.org/10.1002/batt.202200090

Energiatárolási és akkumulátoripari alapismeretek

Tartalomjegyzék


Kiadó: Akadémiai Kiadó

Online megjelenés éve: 2025

ISBN: 978 963 664 126 9

A kötet átfogó, horizontális tematikával vezeti be az olvasót az akkumulátor értéklánc teljes spektrumába: bemutatja a villamosenergia-piac működését, a telepített energiatárolási megoldásokat, az akkumulátorok járműipari alkalmazása terén az alternatív hajtásláncok felépítését és kulcskomponenseit, valamint részletesen tárgyalja a Li-ion akkumulátorok felépítését, működését, gyártástechnológiáját és a legfrissebb fejlesztési irányokat. Áttekintést nyújt továbbá az akkumulátorok biztonságtechnikájáról, diagnosztikai eljárásairól és az újrahasznosítás legfontosabb szempontjairól. Az olvasó átfogó képet kaphat az elektrokémiai energiatárolás technológiai hátteréről, a mobilitási és telepített tárolási megoldások térnyeréséről, az akkumulátoripar hazai és globális fejlődési irányairól, valamint az ezekhez kapcsolódó lehetőségekről, kihívásokról és szabályozási kérdésekről. A kötet az akkumulátorgyártás alaplépéseitől a jármű- és energiarendszer-integrációig, a töltőinfrastruktúrától a biztonságtechnikai, gazdasági és jogi aspektusokig számos kapcsolódó területet is tárgyal. Hasznos olvasmány lehet gépész-, villamos- és vegyipari mérnökök, mechatronikai és gazdasági szakemberek, autóipari és energiaipari szereplők, valamint a közszféra és az oktatás területén dolgozók számára – de mindazoknak is, akik naprakész, rendszerszintű tudást keresnek az energiatárolás és az elektromobilitás dinamikusan fejlődő világában. A kötet elkészítését a Magyar Akkumulátor Szövetség támogatta.

Hivatkozás: https://mersz.hu/kun-energiatarolasi-es-akkumulatoripari-alapismeretek//

BibTeXEndNoteMendeleyZotero

Kivonat
fullscreenclose
printsave