Kun Róbert (szerk.)

Energiatárolási és akkumulátoripari alapismeretek

Fejezetek a villamosenergia-rendszerek, az elektrokémiai és további energiatárolási technológiák témaköréből


2. Irodalom

[1] Zsiborács H, Pintér G, Vincze A, Birkner Z, Baranyai NH. (2021): Grid balancing challenges illustrated by two European examples: Interactions of electric grids, photovoltaic power generation, energy storage and power generation forecasting. Energy Reports, 7, 3805–18. https://doi.org/10.1016/J.EGYR.2021.06.007
[2] Yekini Suberu M, Wazir Mustafa M, Bashir N. (2014): Energy storage systems for renewable energy power sector integration and mitigation of intermittency. Renewable and Sustainable Energy Reviews, 35, 499–514. https://doi.org/10.1016/j.rser.2014.04.009
[3] Steinke F, Wolfrum P, Hoffmann C. (2013): Grid vs. storage in a 100% renewable Europe. Renew Energy, 50, 826–32. https://doi.org/10.1016/J.RENENE.2012.07.044
[4] Pamparana G, Kracht W, Haas J, Díaz-Ferrán G, Palma-Behnke R, Román R. (2017): Integrating photovoltaic solar energy and a battery energy storage system to operate a semi-autogenous grinding mill. J Clean Prod, 165, 273–80. https://doi.org/10.1016/j.jclepro.2017.07.110
[5] Haas J, Nowak W, Palma-Behnke R. (2019): Multi-objective planning of energy storage technologies for a fully renewable system: Implications for the main stakeholders in Chile. Energy Policy, 126, 494–506. https://doi.org/10.1016/j.enpol.2018.11.034
[6] Gulagi A, Bogdanov D, Fasihi M, Breyer C. (2017): Can Australia Power the Energy-Hungry Asia with Renewable Energy? Sustainability, 9, 233. https://doi.org/10.3390/su9020233
[7] Gährs S, Knoefel J. (2020): Stakeholder demands and regulatory framework for community energy storage with a focus on Germany. Energy Policy, 144, 111678. https://doi.org/10.1016/j.enpol.2020.111678
[8] International Renewable Energy Agency (IEA). (2022): World Energy Outlook 2022. Paris, France.
[9] Gurung AB, Borsdorf A, Füreder L, Kienast F, Matt P, Scheidegger C, et al. (2016): Rethinking Pumped Storage Hydropower in the European Alps. Mt Res Dev, 36, 222–32. https://doi.org/10.1659/MRD-JOURNAL-D-15-00069.1
[10] Gyalai-Korpos M, Zentkó L, Hegyfalvi C, Detzky G, Tildy P, Hegedűsné Baranyai N, et al. (2020): The Role of Electricity Balancing and Storage: Developing Input Parameters for the European Calculator for Concept Modeling. Sustainability, 12, 811. https://doi.org/10.3390/su12030811
[11] U.S. Department of Energy. (2022): Energy Storage Systems, DOE Global Energy Storage Database. https://www.sandia.gov/ess/ (accessed July 6, 2023).
[12] Liu WH, Alwi SRW, Hashim H, Muis ZA, Klemeš JJ, Rozali NEM, et al. (2017): Optimal Design and Sizing of Integrated Centralized and Decentralized Energy Systems. Energy Procedia, 105, 3733–40. https://doi.org/10.1016/J.EGYPRO.2017.03.866
[13] Kursun B, Bakshi BR, Mahata M, Martin JF. (2015): Life cycle and emergy based design of energy systems in developing countries: Centralized and localized options. Ecol Modell, 305, 40–53. https://doi.org/10.1016/J.ECOLMODEL.2015.03.006
[14] Ogunjuyigbe ASO, Ayodele TR, Akinola OO. (2016): Impact of distributed generators on the power loss and voltage profile of sub-transmission network. Journal of Electrical Systems and Information Technology, 3, 94–107. https://doi.org/10.1016/J.JESIT.2015.11.010
[15] Agora Energiewende and Sandbag. (2018): The European Power Sector in 2017. State of Affairs and Review of Current Developments. London, United Kingdom and Berlin, Germany.
[16] Varghese S, Sioshansi R. (2020): The price is right? How pricing and incentive mechanisms in California incentivize building distributed hybrid solar and energy-storage systems. Energy Policy, 138, 111242. https://doi.org/10.1016/j.enpol.2020.111242
[17] Akhmatov V, Knudsen H. (2007): Large penetration of wind and dispersed generation into Danish power grid. Electric Power Systems Research, 77, 1228–38. https://doi.org/10.1016/j.epsr.2006.08.009
[18] Eltawil MA, Zhao Z. (2010): Grid-connected photovoltaic power systems: Technical and potential problems-A review. Renewable and Sustainable Energy Reviews, 14, 112–29. https://doi.org/10.1016/j.rser.2009.07.015
[19] Lund H. (2005): Large-scale integration of wind power into different energy systems. Energy, 30, 2402–12. https://doi.org/10.1016/j.energy.2004.11.001
[20] Wolfe P. (2008): The implications of an increasingly decentralised energy system. Energy Policy, 36, 4509–13. https://doi.org/10.1016/j.enpol.2008.09.021
[21] Bird L, Lew D, Milligan M, Carlini EM, Estanqueiro A, Flynn D, et al. Wind and solar energy curtailment: A review of international experience. (2016): Renewable and Sustainable Energy Reviews, 65, 577–86. https://doi.org/10.1016/j.rser.2016.06.082
[22] Joos M, Staffell I. (2018): Short-term integration costs of variable renewable energy: Wind curtailment and balancing in Britain and Germany. Renewable and Sustainable Energy Reviews, 86, 45–65. https://doi.org/10.1016/j.rser.2018.01.009
[23] Schermeyer H, Vergara C, Fichtner W. (2018): Renewable energy curtailment: A case study on today’s and tomorrow’s congestion management. Energy Policy, 112, 427–36. https://doi.org/10.1016/j.enpol.2017.10.037
[24] Laugs GAH, Benders RMJ, Moll HC. (2020): Balancing responsibilities: Effects of growth of variable renewable energy, storage, and undue grid interaction. Energy Policy, 139, 111203. https://doi.org/10.1016/j.enpol.2019.111203
[25] Fathima AH, Palanisamy K. (2016): Energy Storage Systems for Energy Management of Renewables in Distributed Generation Systems. Energy Management of Distributed Generation Systems, InTech. https://doi.org/10.5772/62766
[26] Elia Group. (2019): Forecast and actual solar-PV1 power generation. Brussels, Belgium.
[27] Elia Group. (2023): Wind power generation 2023. https://www.elia.be/en/grid-data/power-generation/wind-power-generation (accessed July 2, 2023).
[28] Antonanzas J, Osorio N, Escobar R, Urraca R, Martinez-de-Pison FJ, Antonanzas-Torres F. (2016). Review of photovoltaic power forecasting. Solar Energy, 136, 78–111. https://doi.org/10.1016/j.solener.2016.06.069
[29] Bird L, Cochran J, Wang X. (2014): Wind and Solar Energy Curtailment: Experience and Practices in the United States. Golden, CO (United States). https://doi.org/10.2172/1126842
[30] Zhang J, Hodge BM, Lu S, Hamann HF, Lehman B, Simmons J, et al. (2015): Baseline and target values for regional and point PV power forecasts: Toward improved solar forecasting. Solar Energy, 122, 804–19. https://doi.org/10.1016/j.solener.2015.09.047
[31] Dell RM, Rand DAJ. (2001): Energy storage – A key technology for global energy sustainability. J Power Sources, 100, 2–17. https://doi.org/10.1016/S0378-7753(01)00894-1
[32] Hall PJ, Bain EJ. (2008): Energy-storage technologies and electricity generation. Energy Policy, 36, 4352–5. https://doi.org/10.1016/j.enpol.2008.09.037
[33] Müller M, Viernstein L, Truong CN, Eiting A, Hesse HC, Witzmann R, et al. (2017): Evaluation of grid-level adaptability for stationary battery energy storage system applications in Europe. J Energy Storage, 9, 1–11. https://doi.org/10.1016/j.est.2016.11.005
[34] ENTSO-E. TYNDP 2018 – Scenario Report 2018. https://tyndp.entsoe.eu/tyndp2018/scenario-report (accessed September 20, 2020).
[35] Department of Energy & Climate Change. DECC 2050 Calculator 2010.
[36] Pestiaux J, Matton V, Cornet M, Costa L, Hezel B, Kelly G, et al. (2019): Introduction to the EUCalc model Cross-Sectoral Model description and documentation. Brussels, Belgium.
[37] International Renewable Energy Agency. (2017): Electricity storage and renewables: Costs and markets to 2030. Abu Dhabi, United Arab Emirates. https://doi.org/ISBN 978-92-9260-038-9 (PDF).
[38] Zsiborács H, Baranyai NH, Vincze A, Zentkó L, Birkner Z, Máté K, et al. (2019): Intermittent Renewable Energy Sources: The Role of Energy Storage in the European Power System of 2040. Electronics (Basel), 8, 729. https://doi.org/10.3390/electronics8070729
[39] Maciejowska K, Nitka W, Weron T. (2019): Day-Ahead vs. Intraday—Forecasting the Price Spread to Maximize Economic Benefits. Energies (Basel), 12, 631. https://doi.org/10.3390/en12040631
[40] Silva, A. R., Pousinho, H. M. I., Estanqueiro, A. (2022): A multistage stochastic approach for the optimal bidding of variable renewable energy in the day-ahead, intraday and balancing markets. Energy, 258, 124856. https://doi.org/10.1016/J.ENERGY.2022.124856
[41] European Commission. (2019): Regulation (EU) 2019/943 of the European Parliament and of the Council of 5 June 2019 on the internal market for electricity.
[42] Wattler Kft. (2017): What you’ve always wanted to know about balancing energy – part two. https://wattler.eu/2017/04/everything-always-wanted-know-balancing-energy-part-2/ (accessed September 10, 2020).
[43] EUR-Lex. (2019): Regulation (EU) 2019/943 of the European Parliament and of the Council of 5 June 2019 on the internal market for electricity 2020. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019R0943 (accessed October 23, 2020).
[44] European Network of Transmission System Operators for Electricity (ENTSO-E). ENTSO-E Transparency Platform 2022. https://transparency.entsoe.eu/dashboard/show (accessed November 2, 2022).
[45] Fathima AH, Palanisamy K. (2016): Energy Storage Systems for Energy Management of Renewables in Distributed Generation Systems. Energy Management of Distributed Generation Systems, InTech. https://doi.org/10.5772/62766
[46] Pannon Green Power Ltd. (2019): Practical-economic experiences of PV energy storage systems.

Energiatárolási és akkumulátoripari alapismeretek

Tartalomjegyzék


Kiadó: Akadémiai Kiadó

Online megjelenés éve: 2025

ISBN: 978 963 664 126 9

A kötet átfogó, horizontális tematikával vezeti be az olvasót az akkumulátor értéklánc teljes spektrumába: bemutatja a villamosenergia-piac működését, a telepített energiatárolási megoldásokat, az akkumulátorok járműipari alkalmazása terén az alternatív hajtásláncok felépítését és kulcskomponenseit, valamint részletesen tárgyalja a Li-ion akkumulátorok felépítését, működését, gyártástechnológiáját és a legfrissebb fejlesztési irányokat. Áttekintést nyújt továbbá az akkumulátorok biztonságtechnikájáról, diagnosztikai eljárásairól és az újrahasznosítás legfontosabb szempontjairól. Az olvasó átfogó képet kaphat az elektrokémiai energiatárolás technológiai hátteréről, a mobilitási és telepített tárolási megoldások térnyeréséről, az akkumulátoripar hazai és globális fejlődési irányairól, valamint az ezekhez kapcsolódó lehetőségekről, kihívásokról és szabályozási kérdésekről. A kötet az akkumulátorgyártás alaplépéseitől a jármű- és energiarendszer-integrációig, a töltőinfrastruktúrától a biztonságtechnikai, gazdasági és jogi aspektusokig számos kapcsolódó területet is tárgyal. Hasznos olvasmány lehet gépész-, villamos- és vegyipari mérnökök, mechatronikai és gazdasági szakemberek, autóipari és energiaipari szereplők, valamint a közszféra és az oktatás területén dolgozók számára – de mindazoknak is, akik naprakész, rendszerszintű tudást keresnek az energiatárolás és az elektromobilitás dinamikusan fejlődő világában. A kötet elkészítését a Magyar Akkumulátor Szövetség támogatta.

Hivatkozás: https://mersz.hu/kun-energiatarolasi-es-akkumulatoripari-alapismeretek//

BibTeXEndNoteMendeleyZotero

Kivonat
fullscreenclose
printsave